构建线段树用了分治的思想
线段树查询数组中值的大小
//求数组对应区间值的大小
#include<bits/stdc++.h>
int const maxsize = 1000;
void build_tree(int arr[],int tree[],int node,int start,int end){ //创建线段树
if(start==end){
tree[node]=arr[start];
}
else{
int mid = (start+end)/2;
int node_left=node*2+1;
int node_right=node*2+2;
build_tree(arr,tree,node_left,start,mid);
build_tree(arr,tree,node_right,mid+1,end);
tree[node]=tree[node_left]+tree[node_right];
}
}
void updata_tree(int arr[],int tree[],int node,int start,int end,int index,int val){ //修改arr数组 重构线段树
if(end==start){ //找到了arr数组对应线段树最低层需要修改的值
tree[node] = val;
arr[index] =val;
}
else
{
int mid = (start+end)/2;
int node_left=node*2+1;
int node_right=node*2+2;
if(index<=mid){ //说明修改的点在线段树的左边
updata_tree(arr,tree,node_left,start,mid,index,val);
}else{
updata_tree(arr,tree,node_right,mid+1,end,index,val);
}
tree[node]=tree[node_left]+tree[node_right];//重构线段树
}
}
int query_tree(int arr[],int tree[],int node,int start,int end,int left,int right){
if(left>end||right<start){ //递归返回条件
return 0;
}else if(left<=start && end<=right){ //这个位置逻辑不要搞错了 当end start 在搜索区间的条件 可以直接返回了
return tree[node];
}else if(start==end){ //此步可以省略,前一步已经包含了
return tree[node];
}
else{
int mid=(start+end)/2;
int node_left = node*2+1;
int node_right = node*2+2;
int sum_left=query_tree(arr,tree,node_left,start,mid,left,right);
int sum_right=query_tree(arr,tree,node_right,mid+1,end,left,right);
return sum_left+sum_right;
}
}
int main(){
int arr[6]={1,3,5,7,9,11};
int tree[maxsize]={0};
int size = 6;
build_tree(arr,tree,0,0,size-1);
// for(int i=0;i<15;i++){
// printf("%d\n",tree[i]);
// }
// updata_tree(arr,tree,0,0,size-1,4,6);
// for(int i=0;i<15;i++){
// printf("%d\n",tree[i]);
// }
int sum=query_tree(arr,tree,0,0,size-1,3,5);
printf("%d\n",sum);
return 0;
}