线程的生命周期
创建-就绪-运行-阻塞-死亡
调用start和运行run方法
创建多线程的方法:
- 继承Thread类,重写run方法,使用start方法创建一个线程
- 实现Runnable接口,重写run方法,通过new Thread(Runnable target).start创建一个线程
通过start去创建一个线程,属于线程级别的的调用,而run方法属于方法级的调用,我们常说的现场复用,其实也是做了cas的方法级的调用,让我们误以为是一个多线程。
线程池
- executorService1 = Executors.newFixedThreadPool(10);//慢 -----加上睡眠,看起来就像10个一组在运行
- ExecutorService executorService2 = Executors.newCachedThreadPool();//快
- ExecutorService executorService3 = Executors.newSingleThreadExecutor();//最慢 --加上睡眠,看起来就像10个一组在运行
线程池的参数:
int corePoolSize,核心线程
int maximumPoolSize,非核心线程
long keepAliveTime,时间
TimeUnit unit,时间单位
BlockingQueue<Runnable> workQueue,队列
ThreadFactory threadFactory,线程工厂
RejectedExecutionHandler handler 拒绝策略
线程提交任务的顺序为:核心线程-队列-非核心线程
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
//如果核心线程的数量大于当前线程池中的数量,把当前任务放进核心线程。
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
//如果核心线程已满,并且可以进入队列,那么我们就需判断该线程是否成功进入,可能会出现饿死的情况,必要的时候,需要回滚。如果队列已经饱和了,那么就需要进入非核心线程中。
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
线程执行任务的顺序为:核心线程-非核心线程-队列
执行优先级的核心代码
当使用线程复用的核心代码
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
//或运算时,只要前一个条件满足,后面的就不用执行
//所以当核心线程为空时,才会去执行getTask()方法,最后执行processWorkerExit方法。
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
//方法级调用,这里也是线程复用的核心
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
//首先确保当前任务是否完成,完成对时候并释放锁,然后再去工作队列中获取任务。
private void processWorkerExit(Worker w, boolean completedAbruptly) {
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
workers.remove(w);
} finally {
mainLock.unlock();
}
tryTerminate();
int c = ctl.get();
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);
}
}
复用的流程