HDU 6611 K Subsequence (最小费用最大流)

本文深入探讨了最小成本最大流算法的实现细节,通过具体的代码示例展示了如何在图中寻找最小成本路径以达到最大流的目标。文章涵盖了算法的初始化、边的添加以及核心的最小成本最大流求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

#include <iostream>
#include <stdio.h>
#include <queue>
#include <cstring> 
#include <algorithm>
#define il inline
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e4;
const int INF = 0x7fffffff;
struct edge {
	int to, capacity, cost, rev;
	edge() {}
	edge(int to, int _capacity, int _cost, int _rev) :to(to), capacity(_capacity), cost(_cost), rev(_rev) {}
};
struct Min_Cost_Max_Flow {
	int V, H[maxn + 5], dis[maxn + 5], PreV[maxn + 5], PreE[maxn + 5];
	vector<edge> G[maxn + 5];
	//调用前初始化
	void Init(int n) {
		V = n;
		for (int i = 0; i <= V; ++i)G[i].clear();
	}
	//加边
	void Add_Edge(int from, int to, int cap, int cost) {
		G[from].push_back(edge(to, cap, cost, G[to].size()));
		G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
	}
	//flow是自己传进去的变量,就是最后的最大流,返回的是最小费用
	int Min_cost_max_flow(int s, int t, int f, int& flow) {
		int res = 0; fill(H, H + 1 + V, 0);
		while (f) {
			priority_queue <pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > q;
			fill(dis, dis + 1 + V, INF);
			dis[s] = 0; q.push(pair<int, int>(0, s));
			while (!q.empty()) {
				pair<int, int> now = q.top(); q.pop();
				int v = now.second;
				if (dis[v] < now.first)continue;
				for (int i = 0; i < G[v].size(); ++i) {
					edge& e = G[v][i];
					if (e.capacity > 0 && dis[e.to] > dis[v] + e.cost + H[v] - H[e.to]) {
						dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
						PreV[e.to] = v;
						PreE[e.to] = i;
						q.push(pair<int, int>(dis[e.to], e.to));
					}
				}
			}
			if (dis[t] == INF)break;
			for (int i = 0; i <= V; ++i)H[i] += dis[i];
			int d = f;
			for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity);
			f -= d; flow += d; res += d*H[t];
			for (int v = t; v != s; v = PreV[v]) {
				edge& e = G[PreV[v]][PreE[v]];
				e.capacity -= d;
				G[v][e.rev].capacity += d;
			}
		}
		return res;
	}
	int Max_cost_max_flow(int s, int t, int f, int& flow) {
		int res = 0;
		fill(H, H + 1 + V, 0);
		while (f) {
			priority_queue <pair<int, int> > q;
			fill(dis, dis + 1 + V, -INF);
			dis[s] = 0;
			q.push(pair<int, int>(0, s));
			while (!q.empty()) {
				pair<int, int> now = q.top(); q.pop();
				int v = now.second;
				if (dis[v] > now.first)continue;
				for (int i = 0; i < G[v].size(); ++i) {
					edge& e = G[v][i];
					if (e.capacity > 0 && dis[e.to] < dis[v] + e.cost + H[v] - H[e.to]) {
						dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
						PreV[e.to] = v;
						PreE[e.to] = i;
						q.push(pair<int, int>(dis[e.to], e.to));
					}
				}
			}
			if (dis[t] == -INF)break;
			for (int i = 0; i <= V; ++i)H[i] += dis[i];
			int d = f;
			for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity);
			f -= d; flow += d;
			res += d*H[t];
			for (int v = t; v != s; v = PreV[v]) {
				edge& e = G[PreV[v]][PreE[v]];
				e.capacity -= d;
				G[v][e.rev].capacity += d;
			}
		}
		return res;
	}
};
Min_Cost_Max_Flow MCMF;
int a[2005];
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		int n,k;
		scanf("%d %d",&n,&k);
		int s1 = 0,s2 = 2*n+1,t=2*n+2;
		MCMF.Init(t);
		for(int i=1;i<=n;i++){
			scanf("%d",&a[i]);
			MCMF.Add_Edge(i,i+n,1,-a[i]);
		}
		for(int i=1;i<=n;i++){
			for(int j=i+1;j<=n;j++)
				if(a[j]>=a[i])MCMF.Add_Edge(i+n,j,1,0); 
		}
		for(int i=1;i<=n;i++)MCMF.Add_Edge(s2,i,1,0),MCMF.Add_Edge(i+n,t,1,0);
		MCMF.Add_Edge(s1,s2,k,0);
		int flow = 0;
		printf("%d\n",-MCMF.Min_cost_max_flow(s1,t,INF,flow));
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wym_king

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值