OpenCV实例(五)指纹识别

本文深入探讨了指纹识别技术,包括概述、原理和算法。重点介绍了特征提取,特别是SIFT(尺度不变特征变换)方法在指纹识别中的应用。SIFT具有旋转和平移不变性,能有效应对光照变化和图像模糊,是实现指纹识别的强大工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:Xiou

1.指纹识别概述

1.1概述

指纹识别,简单来说就是判断一枚未知的指纹属于一组已知指纹里面的哪个人的指纹。这个识别过程与我们在村口识别远处走来的人类似,首先,要抓住主要特征,二者的主要特征要一致;其次,二者要有足够多的主要特征一致。满足了这两个条件就能判断一枚指纹是否与某个人的指纹一致了。

图像处理过程中非常关键的一个步骤就是特征提取。特征提取需要解决的问题有如下两个:
● 选择有用的特征。该过程要选择核心的关键特征,该特征要能体现当前图像的个性。

● 将特征量化。特征是抽象的,是计算机无法理解的,要把特征转换成数值的形式,以便通过计算完成图像的识别、匹配等。

图像的个性化特征,是指能够体现图像自身特点的、易于区别于其他图像的特征。个性化特征既可以是本类图像的专有特征,也可以是图像的通用特征。例如,在进行指纹识别时,可以采用两种不同的方式提取个性化特征:

● 提取指纹的专有特征,如脊线的方向、分叉点、顶点等。这些特征是针对指纹图像设计的。

● 提取图像中的关键点特征。关键点特征并不是每类图像专有的特征。例如,一些角点、拐点等形态或方向特征,提取指纹图像中这些关键点特征的方式与提取其他类型图像的关

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小幽余生不加糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值