zoj3329 One Person Game

本文介绍了一种计算一人数独游戏中投掷骰子次数期望值的方法。玩家使用三个不同面数的骰子进行游戏,根据特定规则更新计数器数值,直至达到预设值n结束游戏。通过数学和编程手段,求解在此过程中玩家需要投掷骰子的平均次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

One Person Game

Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge

There is a very simple and interesting one-person game. You have 3 dice, namely Die1Die2 and Die3Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1K2K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:

  1. Set the counter to 0 at first.
  2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
  3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

Calculate the expectation of the number of times that you cast dice before the end of the game.

Input

There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers nK1K2K3abc (0 <= n <= 500, 1 < K1K2K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).

Output

For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

Sample Input

2
0 2 2 2 1 1 1
0 6 6 6 1 1 1

Sample Output

1.142857142857143
1.004651162790698

Author: CAO, Peng

Source: The 7th Zhejiang Provincial Collegiate Programming Contest


题解:这种题目我自己做出来还是想都别想了orz

吐个槽,怎么学个oi还扯那么多数学

大牛:https://www.cnblogs.com/kuangbin/archive/2012/10/03/2710648.html


代码:

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

int main(){

    //freopen("input.txt","r",stdin);

    int t,n,k1,k2,k3,a,b,c;
    scanf("%d",&t);
    double p0,p[20];
    while(t--){
        cin>>n>>k1>>k2>>k3>>a>>b>>c;
        int tot=k1+k2+k3;
        p0=1.0/(k1*k2*k3);
        memset(p,0,sizeof(p));
        for(int i=1;i<=k1;i++)
            for(int j=1;j<=k2;j++)
                for(int k=1;k<=k3;k++)
                    if(i!=a || j!=b || k!=c)
                        p[i+j+k]+=p0;
        double a[520]={0},b[520]={0};
        for(int i=n;i>=0;i--){
            for(int k=3;k<=tot;k++){
                a[i]+=a[i+k]*p[k];
                b[i]+=b[i+k]*p[k];
            }
            a[i]+=p0;
            b[i]+=1;
        }
        printf("%.15lf\n",b[0]/(1-a[0]));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值