数据的特征预处理实战

 

 简单的数据预处理:

import pandas as pd
import  numpy as np
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.decomposition import PCA
import pydotplus

#sl:satisfaction_level---False:MinMaxScaler;True:StandardScaler
#le:last_evaluation---False:MinMaxScaler;True:StandardScaler
#npr:number_project---False:MinMaxScaler;True:StandardScaler
#amh:average_monthly_hours--False:MinMaxScaler;True:StandardScaler
#tsc:time_spend_company--False:MinMaxScaler;True:StandardScaler
#wa:Work_accident--False:MinMaxScaler;True:StandardScaler
#pl5:promotion_last_5years--False:MinMaxScaler;True:StandardScaler
#dp:department--False:LabelEncoding;True:OneHotEncoding
#slr:salary--False:LabelEncoding;True:OneHotEncoding

#定义函数读入数据
def hr_preprocessing(sl=False,le=False,npr=False,amh=False,tsc=False,wa=False,pl5=False,dp=False,slr=False,lower_d=False,ld_n=1):
    df = pd.read_csv("./HR.csv")

    # 1、清洗数据
    df = df.dropna(subset=["satisfaction_level", "last_evaluation"])
    df = df[df["satisfaction_level"] <= 1][df["salary"] != "nme"]
    # 2、得到标注
    label = df["left"]
    df = df.drop("left", axis=1)
    # 3、特征选择
    # 4、特征处理
    scaler_lst = [sl, le, npr, amh, tsc, wa, pl5]
    column_lst = ["satisfaction_level", "last_evaluation", "number_project", \
                  "average_monthly_hours", "time_spend_company", "Work_accident", \
                  "promotion_last_5years"]
    for i in range(len(scaler_lst)):
        if not scaler_lst[i]:
            df[column_lst[i]] = \
                MinMaxScaler().fit_transform(df[column_lst[i]].values.reshape(-1, 1)).reshape(1, -1)[0]
        else:
            df[column_lst[i]] = \
                StandardScaler().fit_transform(df[column_lst[i]].values.reshape(-1, 1)).reshape(1, -1)[0]
    scaler_lst = [slr, dp]
    column_lst = ["salary", "department"]
    for i in range(len(scaler_lst)):
        if not scaler_lst[i]:
            if column_lst[i] == "salary":
                df[column_lst[i]] = [map_salary(s) for s in df["salary"].values]
            else:
                df[column_lst[i]] = LabelEncoder().fit_transform(df[column_lst[i]])
            df[column_lst[i]] = MinMaxScaler().fit_transform(df[column_lst[i]].values.reshape(-1, 1)).reshape(1, -1)[0]

        else:
            df = pd.get_dummies(df, columns=[column_lst[i]])
    if lower_d:
        return PCA(n_components=ld_n).fit_transform(df.values), label #PAC降维可以不使用标注
    return df, label


d = dict([("low", 0), ("medium", 1), ("high", 2)])
def map_salary(s):
    return d.get(s,0)
def main():
    print(hr_preprocessing())

if __name__ == '__main__':
    main()

 部分数据:

satisfaction_level,last_evaluation,number_project,average_monthly_hours,time_spend_company,Work_accident,left,promotion_last_5years,department,salary
0.38,0.53,2,157,3,0,1,0,sales,low
0.8,0.86,5,262,6,0,1,0,sales,medium
0.11,0.88,7,272,4,0,1,0,sales,medium
0.72,0.87,5,223,5,0,1,0,sales,low
0.37,0.52,2,159,3,0,1,0,sales,low
0.41,0.5,2,153,3,0,1,0,sales,low
0.1,0.77,6,247,4,0,1,0,sales,low
0.92,0.85,5,259,5,0,1,0,sales,low
0.89,1,5,224,5,0,1,0,sales,low
0.42,0.53,2,142,3,0,1,0,sales,low
0.45,0.54,2,135,3,0,1,0,sales,low
0.11,0.81,6,305,4,0,1,0,sales,low
0.84,0.92,4,234,5,0,1,0,sales,low
0.41,0.55,2,148,3,0,1,0,sales,low
0.36,0.56,2,137,3,0,1,0,sales,low
0.38,0.54,2,143,3,0,1,0,sales,low
0.45,0.47,2,160,3,0,1,0,sales,low
0.78,0.99,4,255,6,0,1,0,sales,low
0.45,0.51,2,160,3,1,1,1,sales,low
0.76,0.89,5,262,5,0,1,0,sales,low
0.11,0.83,6,282,4,0,1,0,sales,low
0.38,0.55,2,147,3,0,1,0,sales,low
0.09,0.95,6,304,4,0,1,0,sales,low
0.46,0.57,2,139,3,0,1,0,sales,low
0.4,0.53,2,158,3,0,1,0,sales,low
0.89,0.92,5,242,5,0,1,0,sales,low
0.82,0.87,4,239,5,0,1,0,sales,low
0.4,0.49,2,135,3,0,1,0,sales,low
0.41,0.46,2,128,3,0,1,0,accounting,low
0.38,0.5,2,132,3,0,1,0,accounting,low
0.09,0.62,6,294,4,0,1,0,accounting,low
0.45,0.57,2,134,3,0,1,0,hr,low
0.4,0.51,2,145,3,0,1,0,hr,low
0.45,0.55,2,140,3,0,1,0,hr,low
0.84,0.87,4,246,6,0,1,0,hr,low
0.1,0.94,6,255,4,0,1,0,technical,low
0.38,0.46,2,137,3,0,1,0,technical,low
0.45,0.5,2,126,3,0,1,0,technical,low
0.11,0.89,6,306,4,0,1,0,technical,low
0.41,0.54,2,152,3,0,1,0,technical,low
0.87,0.88,5,269,5,0,1,0,technical,low
0.45,0.48,2,158,3,0,1,0,technical,low
0.4,0.46,2,127,3,0,1,0,technical,low
0.1,0.8,7,281,4,0,1,0,technical,low
0.09,0.89,6,276,4,0,1,0,technical,low
0.84,0.74,3,182,4,0,1,0,technical,low
0.4,0.55,2,147,3,0,1,0,support,low
0.57,0.7,3,273,6,0,1,0,support,low
0.4,0.54,2,148,3,0,1,0,support,low
0.43,0.47,2,147,3,0,1,0,support,low
0.13,0.78,6,152,2,0,1,0,support,low
0.44,0.55,2,135,3,0,1,0,support,low
0.38,0.55,2,134,3,0,1,0,support,low
0.39,0.54,2,132,3,0,1,0,support,low
0.1,0.92,7,307,4,0,1,0,support,low
0.37,0.46,2,140,3,0,1,0,support,low
0.11,0.94,7,255,4,0,1,0,support,low
0.1,0.81,6,309,4,0,1,0,technical,low
0.38,0.54,2,128,3,0,1,0,technical,low
0.85,1,4,225,5,0,1,0,technical,low
0.85,0.91,5,226,5,0,1,0,management,medium
0.11,0.93,7,308,4,0,1,0,IT,medium
0.1,0.95,6,244,5,0,1,0,IT,medium
0.36,0.56,2,132,3,0,1,0,IT,medium
0.11,0.94,6,286,4,0,1,0,IT,medium
0.81,0.7,6,161,4,0,1,0,IT,medium
0.43,0.54,2,153,3,0,1,0,product_mng,medium
0.9,0.98,4,264,6,0,1,0,product_mng,medium
0.76,0.86,5,223,5,1,1,0,product_mng,medium
0.43,0.5,2,135,3,0,1,0,product_mng,medium
0.74,0.99,2,277,3,0,1,0,IT,medium
0.09,0.77,5,275,4,0,1,0,product_mng,medium
0.45,0.49,2,149,3,0,1,0,product_mng,high
0.09,0.87,7,295,4,0,1,0,product_mng,low
0.11,0.97,6,277,4,0,1,0,product_mng,medium
0.11,0.79,7,306,4,0,1,0,product_mng,medium
0.1,0.83,6,295,4,0,1,0,product_mng,medium
0.4,0.54,2,137,3,0,1,0,marketing,medium
0.43,0.56,2,157,3,0,1,0,sales,low
0.39,0.56,2,142,3,0,1,0,accounting,low
0.45,0.54,2,140,3,0,1,0,support,low
0.38,0.49,2,151,3,0,1,0,technical,low
0.79,0.59,4,139,3,0,1,1,management,low
0.84,0.85,4,249,6,0,1,0,marketing,low
0.11,0.77,6,291,4,0,1,0,marketing,low
0.11,0.87,6,305,4,0,1,0,marketing,low
0.17,0.84,5,232,3,0,1,0,sales,low
0.44,0.45,2,132,3,0,1,0,sales,low
0.37,0.57,2,130,3,0,1,0,sales,low
0.1,0.79,6,291,4,0,1,0,sales,low
0.4,0.5,2,130,3,0,1,0,sales,low
0.89,1,5,246,5,0,1,0,sales,low
0.42,0.48,2,143,3,0,1,0,sales,low
0.46,0.55,2,129,3,0,1,0,sales,low
0.09,0.83,6,255,4,0,1,0,sales,low
0.37,0.51,2,155,3,0,1,0,sales,low
0.1,0.77,6,265,4,0,1,0,sales,low
0.1,0.84,6,279,4,0,1,0,sales,low
0.11,0.97,6,284,4,0,1,0,sales,low

处理结果 :

 数据清洗:

1)样本抽样

2)异常值(空值处理)

特征处理:

  1. 特征选择
  2. 特征变换,对指化、离散化、数据平滑、归一化(标准化)、数值化、正规化
  3. 特征降维
  4. 特征衍生

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值