边双连通分量:从图中任意一个点到另外一个点都有>1条可行路,即把原图中的桥全都去掉以后,剩下的连通分支都是边双连通分支
求法:把去掉桥后的双连通子图缩成一个点,最少需要加上(leaf + 1)/ 2条边可以使得其变成双连通子图,其中leaf为叶子节点个数。
https://vjudge.net/problem/POJ-3177
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
#define ll long long
#define mod 1000000007
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 5005;
const int maxm = 20005;
struct edge
{
int to, next;
bool cut;
}e[maxm];
int head[maxn], cnt;
int low[maxn], dfn[maxn], stk[maxn], belong[maxn];
int index, top;
int block;
bool vis[maxn];
int bridge;
void addedge(int u, int v)
{
e[cnt].to = v;
e[cnt].cut = 0;
e[cnt].next = head[u];
head[u] = cnt ++;
}
void tarjan(int u, int pre)
{
int v;
low[u] = dfn[u] = ++ index;
stk[top ++] = u;
vis[u] = 1;
int pre_cnt = 0;
for(int i = head[u]; ~i; i = e[i].next)
{
v = e[i].to;
if(v == pre && pre_cnt == 0)
{
pre_cnt ++;
continue;
}
if(! dfn[v])
{
tarjan(v, u);
if(low[u] > low[v])
low[u] = low[v];
if(low[v] > dfn[u])
{
bridge ++;
e[i].cut = 1;
e[i^1].cut = 1;
}
}
else if(vis[v] && low[u] > dfn[v])
low[u] = dfn[v];
}
if(low[u] == dfn[u])
{
block ++;
do
{
v = stk[-- top];
vis[v] = 0;
belong[v] = block;
}while(v != u);
}
}
int du[maxn];
void solve(int n)
{
memset(dfn, 0, sizeof(dfn));
memset(vis, 0, sizeof(vis));
index = top = block = 0;
tarjan(1, 0);
int ans = 0;
memset(du, 0, sizeof(du));
for(int i = 1; i <= n; i ++)
{
for(int j = head[i]; ~j; j = e[j].next)
{
if(e[j].cut)
du[belong[i]] ++;
}
}
for(int i = 1; i <= block; i ++)
if(du[i] == 1)
ans ++;
printf("%d\n", (ans + 1) / 2);
}
int main()
{
int n, m, u, v;
while(scanf("%d%d", &n, &m) != EOF)
{
memset(head, -1, sizeof(head));
cnt = 0;
while(m --)
{
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
solve(n);
}
return 0;
}