F - Goldbach`s Conjecture
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Every even integer, greater than 2, can be expressed as the sum of two primes [1].
Now your task is to check whether this conjecture holds for integers up to 107.
InputInput starts with an integer T (≤ 300), denoting the number of test cases.
Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).
For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of(a, b) where
1) Both a and b are prime
2) a + b = n
3) a ≤ b
2
6
4
Case 1: 1
Case 2: 1
1. An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...
这道题看着比较水,但是数据太大了,直接开大数据会超时,需要筛去一些无用的非素数
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
bool prime[10000010] = {1, 1, 0};
int main()
{
for(int i = 2; i * i <= 10000010; i ++)
if(!prime[i])
for(int j = i + i; j <= 10000010; j += i)
prime[j] = 1;
int t;
int k = 1;
cin>>t;
while(t--)
{
int n;
int sum = 0;
cin>>n;
for(int i = 1; i <= n/2; i ++)
if(!prime[i]&&!prime[n - i])sum ++;
printf("Case %d: %d\n",k++,sum);
}
return 0;
}
毫无疑问直接tle
改进之后的
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
const int maxn = 10000010;
bool prime[maxn];
int cnt = 0;
int countt[maxn/10];//筛去一些非素数
int main()
{
memset(prime, 1, sizeof(prime));
prime[0] = prime[1] = 0;
for(int i = 2; i < maxn; i ++)
if(prime[i])
{
countt[cnt++] = i;//记录
for(int j = i + i; j <= maxn; j += i)
prime[j] = 0;
}
int t;
int k = 1;
scanf("%d",&t);
while(t--)
{
int n;
int sum = 0;
scanf("%d",&n);
for(int i = 0; countt[i] <= n/2 && i < cnt; i ++)
if(prime[n - countt[i]])sum ++;
printf("Case %d: %d\n",k++,sum);
}
return 0;
}