- 安装环境
- 系统:ubuntu 15.04
- 显卡:GT635m(太渣,不要吐槽
- python版本:2.7.9
#sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg62-dev cmake libswscale-dev libjasper-dev
sudo git clone --recursive https://github.com/dmlc/mxnetcd mxnetsudo cp make/config.mk .
from sklearn.datasets import fetch_mldata from sklearn.utils import shuffle mnist = fetch_mldata('MNIST original', data_home="./mnist") # shuffle data X, y = shuffle(mnist.data, mnist.target) # split dataset train_data = X[:50000, :].astype('float32') train_label = y[:50000] val_data = X[50000: 60000, :].astype('float32') val_label = y[50000:60000] # Normalize data train_data[:] /= 256.0 val_data[:] /= 256.0 # create a numpy iterator batch_size = 100 train_iter = mx.io.NDArrayIter(train_data, train_label, batch_size=batch_size, shuffle=True) val_iter = mx.io.NDArrayIter(val_data, val_label, batch_size=batch_size) # create model as usual: model = mx.model.FeedForward(...) model.fit(X = train_iter, eval_data = val_iter)