hdu 1069 Monkey and Banana

探讨了一个经典的编程问题——如何利用不同尺寸的积木帮助猴子拿到屋顶上的香蕉。该问题通过动态规划解决,需要考虑积木的不同放置方式以及如何构建最高的塔。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food. 

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. 

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. 

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks. 

Input


The input file will contain one or more test cases. The first line of each test case contains an integer n, 
representing the number of different blocks in the following data set. The maximum value for n is 30. 
Each of the next n lines contains three integers representing the values xi, yi and zi. 
Input is terminated by a value of zero (0) for n. 

Output


For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height". 

Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342


大致意思就是 给你n种无限个木块,问能用它们堆多高。堆叠的要求是上面木块的底要严格小于下面木块的底,也就是长和宽都不能相等。

首先是数据的处理,一块木块可以有六种摆放方式(详细见代码),因此干脆每种木块当六块读入,同时因为严格小于,痛同种木块不能堆叠因此不需要考虑重复。然后要把木块排个序,排成按长宽升序。

这道题还是很dp的,每一个木块能叠到多高取决于它上面叠的木块,当然它上面叠的木块高度也取决于它上面叠的木块。就……状态转移了。(大概吧)用dp[i]表示以木块i为底能叠多高。所以按长宽升序,因为长宽最小的木块上面是不能叠的,所以dp[0]就为第一块的高度。之后就是dp了,把i之前的dp数组遍历一下,找到最大的dp加上i的高就是dp[i]了。由于按长宽排序了,能保证叠最多层,同时dp[x]保证是用[x]为底的最大高度,所以叠出来的dp[i]也是最大高度,然后再一个遍历找出dp数组中的最大值就是最终答案了。

我局得这道题很好的体现了dp的思想。一个是需要保存状态,也就是目前堆叠的最大高度;一个是不记录具体决策,即我们不需要具体的摆放方式只需要高度即可;再一个就是全局最优解包含局部最优解,让每一个方块为底的情况都是能达到的最大高度,他们中的最大高度就是所要求得。

AC代码:

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
struct cube
{
    int l,w,h;
}cb[200];
int dp[200];
bool cmp(const cube a,const cube b)
{
    if(a.l==b.l) return a.w<b.w;
    return a.l<b.l;
}
int main()
{
    int n,kase=0;
    while(cin>>n&&n)
    {
        int t=0;
        int a,b,c;
        while(n--)
        {
            cin>>a>>b>>c;
            cb[t].l=a;cb[t].w=b;cb[t++].h=c;
            cb[t].l=a;cb[t].w=c;cb[t++].h=b;
            cb[t].l=c;cb[t].w=a;cb[t++].h=b;
            cb[t].l=c;cb[t].w=b;cb[t++].h=a;
            cb[t].l=b;cb[t].w=a;cb[t++].h=c;
            cb[t].l=b;cb[t].w=c;cb[t++].h=a;
        }
        sort(cb,cb+t,cmp);
        dp[0]=cb[0].h;

        int maxx;
        for(int i=1;i<t;i++)
        {
            maxx=0;
            for(int j=0;j<i;j++)
                if(cb[i].l>cb[j].l&&cb[i].w>cb[j].w)
                    maxx=max(maxx,dp[j]);
            dp[i]=cb[i].h+maxx;

        }
        maxx=0;
        for(int i=0;i<t;i++)
            maxx=max(maxx,dp[i]);

        printf("Case %d: maximum height = %d\n",++kase,maxx);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值