从尾到头打印链表

本文介绍了一种在不改变链表原始结构的情况下,使用递归方法从尾到头打印链表节点值的算法,并展示了如何通过逆置链表来实现这一目标。代码示例包括链表节点定义、初始化、插入、逆置和打印等关键操作。

题目:输入一个链表的头节点,从头到尾反过来打印出每个节点的值。

链表节点定义如下:

Struct ListNode

{

int  m_nKey;

ListNode*m_pNext;

};

思路:

在不改变原来链表的结构时,我们可以用递归来实现这个函数。当每访问到一个节点的时候,先递归输出它后面的节点,再输出该节点自身。逆置链表再打印就OK了。

代码:

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>

typedef int ELEM_TYPE;

typedef  struct Node
{
	ELEM_TYPE mdata;
	struct Node* pnext;
}Node,*Plink;

void Init(Plink phead)
{
	assert(phead!=NULL);
	if(phead==NULL)
	{
		return ;
	}
	phead->pnext=NULL;
}

static Plink BuyNode(ELEM_TYPE val)//申请新结点
{
	Plink pnewnode=(Plink)malloc(sizeof(Node));
	assert(pnewnode!=NULL);
	 pnewnode->mdata=val ;
	pnewnode->pnext=NULL;
   return pnewnode;
}

void InsertHead(Plink phead,ELEM_TYPE val)//头插
{
	if(phead==NULL)
	{
		return ;
	}
	Plink pnewnode=BuyNode(val);
	if(pnewnode==NULL)
	{
		return ;
	}
	pnewnode->pnext=phead->pnext;
	phead->pnext=pnewnode;
}

void Reserve(Plink phead)//逆置
{
	if(phead==NULL)
	{
		return;
	}
	Plink pCur=phead->pnext;
	Plink pNext=pCur;
	phead->pnext=NULL;
	while(pCur!=NULL)
	{
		pNext=pCur->pnext;
		pCur->pnext=phead->pnext;
		phead->pnext=pCur;
		pCur=pNext;
	}
}

void Print(Plink phead)
{
	if(phead==NULL)
	{
		return ;
	}
	Plink pCur = phead->pnext;
	while (pCur != NULL)
	{
		printf("%3d",pCur->mdata);
		pCur=pCur->pnext;
	}
	printf("\n");
}

int main()
{
	Node head;
	Init(&head);
	for(int i=0;i<10;i++)
	{
		InsertHead(&head,i+1);
	}
	Print(&head);
	Reserve(&head);
	Print(&head);
}

运行截图:

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>嗯,用户想了解如何在C++中实现从到头打印链表,而且不使用虚拟头结点,同时还要给主函数添加注释。首先,我需要回顾一下单链表的基本结构和遍历方法。通常,单链表的遍历是从头节点开始,逐个访问直到末。但这里要求逆序打印,也就是说需要先处理后面的节点,再处理前面的节点。这让我想到两种常见的方法:递归和栈。因为这两种方式都能利用后进先出的特性来实现逆序。 用户提到不使用虚拟头节点,这意味着不需要额外的头节点来辅助操作,直接处理原始链表即可。对于递归方法,思路应该是递归到链表,然后逐层返回时输出节点的值。这样自然就形成了逆序。但是需要注意递归的终止条件,即当前节点为空时返回,否则先递归调用下一个节点,再输出当前节点的数据。这种方法代码简洁,但链表过长时可能导致栈溢出,这是一个潜在的缺点。 另一种方法是使用栈。栈的先进后出特性正好符合逆序的需求。遍历链表,将每个节点依次入栈,遍历完成后,依次出栈并输出节点值。这种方法需要额外的栈空间,但避免了递归的栈溢出问题,适合较长的链表。 接下来需要为主函数添加注释。主函数应该包括创建链表、调用逆序打印函数。创建链表可以通过循环添加节点来实现,比如用户输入一组数字,逐个插入链表。然后调用递归或栈的方法进行逆序打印。注释需要说明每一步的操作,比如创建节点、链接节点、调用函数等。 还需要考虑代码的正确性。比如,在递归方法中,递归调用必须在输出之前,否则会变成正序打印。栈的实现中,确保所有节点都被正确压入栈中,然后按顺序弹出。同时,内存管理方面,如果链表是动态分配的,应该在主函数结束时释放内存,但用户可能没有提到这一点,可能需要补充说明或者假设链表由用户自行管理。 参考站内的引用中,引用[3]提到了递归实现二叉树中序遍历,这和递归打印链表有相似之处,都是利用递归的回溯过程来处理节点。引用[1]关于右值引用的内容可能不直接相关,但需要注意在C++代码中正确使用引用和指针。 最后,用户需要主函数的注释,所以代码中应该详细说明每一步的作用,比如如何构建链表,如何调用逆序函数,参数的意义等。同时,示例代码需要符合C++语法,比如使用结构体定义节点,正确处理指针等。</think>### C++实现单链表逆序打印(不使用虚拟头结点) 以下使用递归和栈两种方式实现,包含完整的主函数实现与注释: ```cpp #include <iostream> #include <stack> using namespace std; // 链表节点结构体 struct ListNode { int val; ListNode* next; ListNode(int x) : val(x), next(nullptr) {} }; // 递归方式实现(时间复杂度O(n),空间复杂度O(n)) void reversePrintRecursive(ListNode* node) { if (!node) return; // 递归终止条件 reversePrintRecursive(node->next); // 先递归到链表 cout << node->val << " "; // 回溯时输出 } // 栈方式实现(时间复杂度O(n),空间复杂度O(n)) void reversePrintStack(ListNode* head) { stack<ListNode*> st; while (head) { // 将所有节点压入栈 st.push(head); head = head->next; } while (!st.empty()) { // 依次弹出栈顶元素 cout << st.top()->val << " "; st.pop(); } } int main() { // 创建示例链表 1->2->3->4->5 ListNode* head = new ListNode(1); // 头节点 ListNode* cur = head; // 当前指针 for (int i = 2; i <= 5; ++i) { // 循环添加后续节点 cur->next = new ListNode(i); cur = cur->next; } cout << "递归方式输出:"; reversePrintRecursive(head); // 调用递归方法 cout << "\n栈方式输出:"; reversePrintStack(head); // 调用栈方法 // 内存释放(实际开发中需要) while (head) { ListNode* temp = head; head = head->next; delete temp; } return 0; } ``` ### 关键实现说明 1. **递归方法**:利用函数调用栈实现逆序,递归到链表末端后回溯时输出数据[^3] 2. **栈方法**:显式使用栈存储节点,通过先进后出特性实现逆序 3. **时间复杂度**:两种方式均为$O(n)$,需要完整遍历链表 4. **空间复杂度**:两种方式均为$O(n)$,递归使用隐式栈,显式栈使用额外内存 ### 主函数实现要点 1. 创建链表时采用动态内存分配 2. 使用循环结构添加节点 3. 同时演示两种方法的调用 4. 包含内存释放操作(实际开发必要)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值