电磁场与电磁波第一章公式总结

博客主要介绍了矢量代换公式,包括矢量的加减、点乘、叉乘等运算。还阐述了散度、旋度相关公式,以及高斯定理、斯托克斯定理。同时给出了梯度、散度、旋度在不同坐标系下的表达式,最后介绍了格林第一和第二恒等式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矢量代换公式
A⃗=A(e⃗xcosα+e⃗ycosβ+e⃗zcosγ)\vec{A}=A(\vec{e}_xcos\alpha+\vec{e}_ycos\beta+\vec{e}_zcos\gamma)A=A(excosα+eycosβ+ezcosγ)
A⃗±B⃗=e⃗x(Ax±Bx)+e⃗y(Ay±By)+e⃗z(Az±Bz)\vec{A}\pm\vec{B}=\vec{e}_x(A_x\pm B_x)+\vec{e}_y(A_y\pm B_y)+\vec{e}_z(A_z\pm B_z)A±B=ex(Ax±Bx)+ey(Ay±By)+ez(Az±Bz)
A⃗⋅B⃗=标量=ABcosθ=AxBx+AyBy+AzBz\vec{A}\cdot\vec{B}=标量=ABcos\theta=A_x B_x+A_y B_y+A_z B_zAB==ABcosθ=AxBx+AyBy+AzBz
A⃗×B⃗=矢量=e⃗nABsinθ\vec{A}\times \vec{B}=矢量=\vec{e}_nABsin\thetaA×B==enABsinθ
A⃗×B⃗=−B⃗×A⃗\vec{A}\times \vec{B}=-\vec{B}\times \vec{A}A×B=B×A
A⃗×B⃗=e⃗x(AyBz−AzBy)+e⃗y(AzBx−AxBz)+e⃗z(AxBy−AyBx)\vec{A}\times \vec{B}=\vec{e}_x(A_y B_z - A_z B_y)+\vec{e}_y(A_z B_x - A_x B_z)+\vec{e}_z(A_x B_y - A_y B_x)A×B=ex(AyBzAzBy)+ey(AzBxAxBz)+ez(AxByAyBx)
A⃗×B⃗=∣e⃗xe⃗ye⃗zAxAyAzBxByBz∣\vec{A}\times \vec{B}=\left| \begin{matrix} {\vec{e}_x} & {\vec{e}_y} & {\vec{e}_z}\\ {A_x} & {A_y} & {A_z}\\ {B_x} & {B_y} & {B_z} \end{matrix} \right|A×B=exAxBxeyAyByezAzBz
A⃗⋅(A⃗×B⃗)=0\vec{A}\cdot(\vec{A} \times \vec{B})=0A(A×B)=0
(A⃗+B⃗)⋅C⃗=A⃗⋅C⃗+B⃗⋅C⃗(\vec{A}+\vec{B})\cdot\vec{C}=\vec{A}\cdot\vec{C}+\vec{B}\cdot\vec{C}(A+B)C=AC+BC
(A⃗+B⃗)×C⃗=A⃗×C⃗+B⃗×C⃗(\vec{A}+\vec{B})\times\vec{C}=\vec{A}\times\vec{C}+\vec{B}\times\vec{C}(A+B)×C=A×C+B×C
A⃗⋅(B⃗×C⃗)=(A⃗×B⃗)⋅C⃗=(A⃗×C⃗)⋅B⃗\vec{A}\cdot(\vec{B}\times \vec{C})=(\vec{A} \times \vec{B})\cdot\vec{C}=(\vec{A} \times \vec{C})\cdot\vec{B}A(B×C)=(A×B)C=(A×C)B
A⃗×(B⃗×C⃗)=B⃗(A⃗⋅C⃗)−C⃗(A⃗⋅B⃗)\vec{A}\times(\vec{B} \times \vec{C})=\vec{B}(\vec{A}\cdot\vec{C})-\vec{C}(\vec{A}\cdot\vec{B})A×(B×C)=B(AC)C(AB)

散度相关公式
1.∇⋅C⃗=0(C⃗为常矢量)\nabla\cdot \vec{C}=0(\vec{C}为常矢量)C=0(C)
2.∇⋅(C⃗f)=C⃗⋅∇f\nabla\cdot (\vec{C}f)=\vec{C}\cdot \nabla f(Cf)=Cf
3.∇⋅(kF⃗)=k∇⋅F⃗(k为常量)\nabla\cdot (k\vec{F})=k\nabla\cdot\vec{F}(k为常量)(kF)=kF(k)
4.∇⋅(fF⃗)=f∇⋅F⃗+F⃗⋅∇f\nabla\cdot (f\vec{F})=f\nabla\cdot \vec{F}+\vec{F}\cdot\nabla f(fF)=fF+Ff
5.∇⋅(F⃗+G⃗)=∇⋅F⃗+∇⋅G⃗\nabla\cdot (\vec{F}+\vec{G})=\nabla\cdot \vec{F}+\nabla\cdot \vec{G}(F+G)=F+G

旋度相关公式
1.∇C⃗=0(C⃗为常矢量)\nabla \vec{C}=0(\vec{C}为常矢量)C=0(C)
2.∇×(C⃗f)=∇f×C⃗\nabla\times (\vec{C}f)=\nabla f\times\vec{C}×(Cf)=f×C
3.∇×(fF⃗)=f∇×C⃗+∇f×C⃗\nabla\times (f\vec{F})=f\nabla\times\vec{C}+\nabla f\times\vec{C}×(fF)=f×C+f×C
4.∇×(F⃗+G⃗)=∇×F⃗+∇×G⃗\nabla\times (\vec{F}+\vec{G})=\nabla\times \vec{F}+\nabla\times \vec{G}×(F+G)=×F+×G
5.∇⋅(F⃗×G⃗)=G⃗⋅∇×F⃗+F⃗⋅∇×G⃗\nabla\cdot (\vec{F}\times\vec{G})=\vec{G}\cdot\nabla\times \vec{F}+\vec{F}\cdot\nabla\times \vec{G}(F×G)=G×F+F×G
6.∇⋅(∇×F⃗)=0;\nabla\cdot(\nabla\times\vec{F})=0;(×F)=0;
7.∇×(∇u)=0;\nabla\times(\nabla u)=0;×(u)=0;

高斯定理
∫V∇⋅F⃗dV=∮sF⃗⋅dS⃗\int_V \nabla\cdot \vec{F}dV=\oint_s \vec{F}\cdot d\vec{S}VFdV=sFdS
(矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分)

斯托克斯定理
∮CF⃗⋅dl⃗=∫S∇×F⃗⋅dS⃗\oint_C \vec{F}\cdot d\vec{l}=\int_S \nabla\times\vec{F}\cdot d\vec{S}CFdl=S×FdS
(矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量)

梯度Δu\Delta uΔu
直角面坐标系:∇u\nabla uu=e⃗x∂u∂x+e⃗y∂u∂y+e⃗z∂u∂z\vec{e}_x\frac{\partial u}{\partial x}+\vec{e}_y\frac{\partial u}{\partial y}+\vec{e}_z\frac{\partial u}{\partial z}exxu+eyyu+ezzu
圆柱面坐标系:∇u\nabla uu=e⃗ρ∂u∂ρ+e⃗ϕ1ρ∂u∂ϕ+e⃗z∂u∂z\vec{e}_{\rho}\frac{\partial u}{\partial \rho}+\vec{e}_{\phi}\frac{1}{\rho}\frac{\partial u}{\partial \phi}+\vec{e}_z\frac{\partial u}{\partial z}eρρu+eϕρ1ϕu+ezzu
球面坐标系:∇u\nabla uu=e⃗r∂u∂r+e⃗θ1r∂u∂θ+e⃗ϕ1rsinθ∂u∂ϕ\vec{e}_r\frac{\partial u}{\partial r}+\vec{e}_{\theta}\frac{1}{r}\frac{\partial u}{\partial \theta}+\vec{e}_{\phi}\frac{1}{rsin\theta}\frac{\partial u}{\partial {\phi}}erru+eθr1θu+eϕrsinθ1ϕu

散度∇⋅F⃗\nabla\cdot \vec{F}F
直角坐标系 :∇⋅F⃗\nabla\cdot \vec{F}F=∂Fx∂x+∂Fy∂y+∂Fz∂z\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z}xFx+yFy+zFz

柱面坐标系:∇⋅F\nabla\cdot FF=1ρ∂∂ρ(ρFρ)+1ρ∂Fϕ∂ϕ+∂Fz∂z\frac{1}{\rho}\frac{\partial }{\partial \rho}(\rho F_\rho)+\frac{1}{\rho}\frac{\partial F_\phi}{\partial \phi}+\frac{\partial F_z}{\partial z}ρ1ρ(ρFρ)+ρ1ϕFϕ+zFz

球面坐标系:∇⋅F\nabla\cdot FF=1r2∂∂r(r2Fr)+1rsinθ∂∂θ(sinθFθ)+1rsinθ∂Fϕ∂ϕ\frac{1}{r^2}\frac{\partial }{\partial r}(r^2 F_r)+\frac{1}{rsin\theta}\frac{\partial }{\partial \theta}(sin\theta F_\theta)+\frac{1}{rsin\theta}\frac{\partial F_\phi}{\partial \phi}r21r(r2Fr)+rsinθ1θ(sinθFθ)+rsinθ1ϕFϕ

旋度∇×F⃗\nabla\times \vec{F}×F
直角坐标系:∇×F⃗=e⃗x(∂Fz∂y−∂Fy∂z)+e⃗y(∂Fx∂z−∂Fz∂x)+e⃗z(∂Fy∂x−∂Fx∂y)=∣e⃗xe⃗ye⃗z∂∂x∂∂y∂∂zFxFyFz∣\nabla\times \vec{F}=\vec{e}_x(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z})+\vec{e}_y(\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x})+\vec{e}_z(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y})=\left| \begin{matrix} {\vec{e}_x} & {\vec{e}_y} & {\vec{e}_z}\\ {\frac{\partial}{\partial x}} & {\frac{\partial}{\partial y}} & {\frac{\partial}{\partial z}}\\ {F_x} & {F_y} & {F_z} \end{matrix} \right|×F=ex(yFzzFy)+ey(zFxxFz)+ez(xFyyFx)=exxFxeyyFyezzFz
圆柱坐标系:∇×F⃗=1ρ∣e⃗ρρe⃗ϕe⃗z∂∂ρ∂∂ϕ∂∂zFρρFϕFz∣\nabla\times \vec{F}=\frac{1}{\rho}\left| \begin{matrix} {\vec{e}_{\rho}} & {\rho\vec{e}_{\phi}} & {\vec{e}_z}\\ {\frac{\partial}{\partial \rho}} & {\frac{\partial}{\partial \phi}} & {\frac{\partial}{\partial z}}\\ {F_\rho} & {\rho F_\phi} & {F_z} \end{matrix} \right|×F=ρ1eρρFρρeϕϕρFϕezzFz
球坐标系:∇×F⃗=1r2sinθ∣e⃗rre⃗θrsinθe⃗ϕ∂∂r∂∂θ∂∂ϕFrrFθrsinθFϕ∣\nabla\times \vec{F}=\frac{1}{r^2sin\theta}\left| \begin{matrix} {\vec{e}_{r}} & {r\vec{e}_{\theta}} & {rsin\theta \vec{e}_\phi}\\ {\frac{\partial}{\partial r}} & {\frac{\partial}{\partial \theta}} & {\frac{\partial}{\partial \phi}}\\ {F_r} & {r F_\theta} & {rsin\theta F_\phi} \end{matrix} \right|×F=r2sinθ1errFrreθθrFθrsinθeϕϕrsinθFϕ

格林第一恒等式
∫V(∇φ⋅∇ψ+φ∇2ψ)dV=∮Sφ∂ψ∂ndS\int_V(\nabla\varphi\cdot\nabla\psi+\varphi\nabla^2\psi)dV=\oint_S\varphi\frac{\partial\psi}{\partial n}dSV(φψ+φ2ψ)dV=SφnψdS

格林第二恒等式

∫V(φ∇2ψ−ψ∇2φ)dV=∮S(φ∂ψ∂n−ψ∂φ∂n)dS\int_V(\varphi\nabla^2\psi-\psi\nabla^2\varphi)dV=\oint_S(\varphi\frac{\partial\psi}{\partial n}-\psi\frac{\partial\varphi}{\partial n})dSV(φ2ψψ2φ)dV=S(φnψψnφ)dS

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值