模型微调的理解

微调是将预训练的神经网络模型应用于新任务的有效方法。首先在大规模源数据集(如ImageNet)上训练模型,然后创建目标模型,保留源模型除输出层外的所有层并随机初始化新的输出层。接着,使用目标数据集(如FashionMNIST)训练这个新模型,只更新输出层,从而利用源模型的先验知识提升在小规模数据集上的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微调(fine tuning)。微调由以下4步构成。
1.在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
2.创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
3.为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。
4.在目标数据集(如FashionMNIST数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。
当目标数据集远小于源数据集时,微调有助于提升模型的泛化能力。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值