ML之XGBoost:XGBoost参数调优之网格搜索的两种函数封装——DIY十多个案例
XGBoost参数调优经验
1、自定义函数:两种调参优化
T10.1、XGBR_model:网格搜索调优,找出最佳参数
T1、调用XGBR_GSCV_Shuffle()函数
from xgboost import XGBRegressor
from sklearn import metrics
#T1、调用XGBR_GSCV_Shuffle()函数进行网格搜索调优,找出最佳参数
def XGBR_GSCV_Shuffle(X, y):
import time
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ShuffleSplit
starttime = time.clock()
cv_split = ShuffleSplit(n_splits=6, train_size=0.7, test_size=0.2) #定义cv_split:利用ShuffleSplit()方法进行随机交叉训练验证
grid_params = dict( #定义grid_params字典:预定义参数范围,max_depth、learning_rate、n_estimators
m