科学计算库Numpy基础&提升(理解+重要函数讲解)

Intro

对于同样的数值计算任务,使用numpy比直接编写python代码实现 优点:

  • 代码更简洁: numpy直接以数组、矩阵为粒度计算并且支持大量的数学函数,而python需要用for循环从底层实现;
  • 性能更高效: numpy的数组存储效率和输入输出计算性能,比python使用list好很多,用numpy进行计算要比原生Python快得多,而且数据量越大,效果越明显;numpy的大部分代码都是c语言实现的,这是numpy比python高效的原因

numpy核心:ndarray对象

ndarray对象

  • numpy的核心数据结构,叫做array就是数组,array对象可以是一维数组,也可以是多维数组
  • python的list也可以实现相同的功能,但是array的优势在于性能好,包含数组元数据信息、大量的便捷函数
  • 成为 Scipy、Pandas、scilit-learn、tensorflow、paddlepaddle等框架的通用底层语言
  • numpy的array和python的list的一个区别是它的元素必须都是同一种数据类型,这也是numpy高性能的一个原因

ndarray属性

个人以前会弄混shape和size,注意shape打印的是数组的形状是一个元组,size则是表示数组大小即总共有多少个元素

  • s
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值