行列式的几何意义、计算公式

近期回顾了下行列式的计算方法,以及其几何意义,本文是作者的一点浅薄理解。欢迎朋友们一起交流。
 线性代数系列文章见专栏,下面是往期内容:

为什么要学线性代数

(点击蓝色字体进入查看)

正题:

每一个线性变换都对应着一个变换矩阵,被变换后的空间,相对之前来说也发生了一定的形变,而行列式的意义则是线性变换前后,空间形变的倍数。

以二维空间为例,旋转变换就是一种线性变换(不了解旋转变换的请看上条推送),其对应的矩阵叫旋转矩阵:

å¾ç

该变换作用在二维空间的任一个向量,相当于将该向量逆时针旋转θ角度,于是该变换可以把整个二维空间旋转θ角度。

因为只是单纯的旋转,面积不发生变化,所以形变的倍数为1,正如该矩阵的行列式,cos^2+sin^2=1。

其他的一些变换,有的将空间伸展,有的将空间挤压,此时形变倍数就不为1了。假设有线性变换矩阵:

å¾ç

该矩阵将二维空间沿着水平方向伸展3倍,垂直方向不变。还是用上一篇推送的例子,假设有如下图形:

å¾ç

可知面积为5,将线性变换矩阵作用于图中的三个向量,比如[-1  3]T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值