迁移学习
第一种做法
把模型的参数加载到自己的网络中
Net部分
import math
import torch.nn as nn
from torchvision.models import ResNet
from torchvision import models
import torch
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class CNN(nn.Module):
def __init__(self, block, layers, num_classes=120):
super(CNN, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
# 新增一个反卷积层
self.convtranspose1 = nn.ConvTranspose2d(2048, 2048, kernel_size=3, stride=1, padding=1, output_padding=0,
groups=1,
bias=False, dilation=1)
# 新增一个最大池化层
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
# 将原来的fc层改成fclass层
self.fclass = nn.Linear(4 * 4 * 2048,
num_classes) # 原来的fc层:self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules(): #
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion), )
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = self.convtranspose1(x)
x = self.maxpool2(x)
x = x.reshape(-1, 4 * 4 * 2048)
x = self.fclass(x)
return x
if __name__ == '__main__':
'''后面接了全连接层,因此要改变图像的输入,则需要改变全连接层'''
x = torch.randn(1, 3, 299, 299)
net = CNN(Bottleneck, [3, 4, 6, 3])
print(net(x).shape)
from torchvision import models
import torch
model = Net() # 这是自定义网络
# 当权重信息在本地
resnet50 = models.resnet50(pretrained=False)
# 本地权重路径
pretrained_file = "model/resnet50.pth"
# 加载参数
resnet50.load_state_dict(torch.load(pretrained_file))
# 本地无权重信息时
# resnet50 = models.resnet50(pretrained=True)
# resnet50.load_state_dict(torch.load(resnet50))
# 加载
pretrained_dict = resnet50.state_dict() # 记录预训练模型的参数
model_dict = model.state_dict() # 新定义网络的参数
# 将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新现有的model_dict
model_dict.updata(pretrained_dict)
# 加载我们需要的state_dict
model.load_state_dict(model_dict)
for param in model.parameters():
param.requires_grad = True # 让参数可训练
第二种做法
直接在训练最后一层
from torchvision import models
import torch.nn as nn
model = models.inception_v3(pretrained=True)
for param in model.parameters():
param.requires_grad = False # 让参数不可被训练
n_classes = 120 # 类别个数
n_inputs = model.fc.in_features # 源网络全连接层输出
model.fc = nn.Sequential(
nn.Linear(n_inputs, 1024),
nn.Relu(),
nn.Dropout(.4),
nn.Linear(1024, n_classes),
nn.LogSoftmax(dim=1)
)