118. 杨辉三角
class Solution {
public List<List<Integer>> generate(int numRows) {
List<List<Integer>> ans = new ArrayList<>();
if(numRows==0) return ans;
ans.add(new ArrayList<Integer>());
ans.get(0).add(1);
for(int i=0; i<numRows-1; i++){
List<Integer> newList = new ArrayList<>();
List<Integer> preList = ans.get(i);
newList.add(1);
for(int j=1; j<i+1; j++){
newList.add(preList.get(j-1)+preList.get(j));
}
newList.add(1);
ans.add(newList);
}
return ans;
}
}
198. 打家劫舍(⭐)
class Solution {
public int rob(int[] nums) {
int len = nums.length;
int[] dp = new int[len+1];
dp[0]=0;
dp[1]=nums[0];
for(int i=1; i<len; i++){
dp[i+1]=Math.max(dp[i], nums[i]+dp[i-1]);
}
/*
int ans=0;
for(int i=0; i<len+1; i++){
ans=Math.max(ans, dp[i]);
}
return ans;
*/
return dp[len];
}
}
279. 完全平方数
class Solution {
public int numSquares(int n) {
int dp[] = new int[n+1];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0]=0;
for(int i=1; i<n+1; i++){//dp的index 从0到n
int x = i*i;
for(int j=1; j*j<n+1; j++){//从1开始的完全平方数:1、4、9、16
if(i-j*j>=0)
dp[i] = Math.min(dp[i], dp[i-j*j]+1);//从前到后遍历更新
}
}
return dp[n];
}
}
322. 零钱兑换
class Solution {
public int coinChange(int[] coins, int amount) {
int n = coins.length;
int dp[] = new int[amount+1];
Arrays.fill(dp, amount+1);
dp[0]=0;
for(int i=1; i<amount+1; i++){
for(int j=0; j<n; j++){
if(i-coins[j]>=0)
dp[i] = Math.min(dp[i], dp[i-coins[j]]+1);
}
}
return dp[amount] == amount+1 ? -1 : dp[amount];
}
}
139. 单词拆分
class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
int len = s.length();
boolean[] dp = new boolean[len+1];
Arrays.fill(dp, false);
dp[0]=true;
for(int i=1; i<len+1; i++){
for(int j=0; j<i; j++){
boolean flag = wordDict.contains(s.substring(j, i));
//flag指后面的词在wordDict里面
//dp[j]指前面的词已经符合条件,能被后面复合的接上
if(flag && dp[j]){
dp[i]=true;
break;//有没有都行
}
}
}
return dp[len];
}
}
300. 最长递增子序列(⭐)
动态规划设计方法&&纸牌游戏讲解二分解法 300. 最长递增子序列 - 力扣(LeetCode)
class Solution {
public int lengthOfLIS(int[] nums) {
int len = nums.length;
if(len == 0) return 0;
int[] dp = new int[len];
Arrays.fill(dp, 1);
for(int i=0; i<len; i++){//dp数组下标
for(int j=0; j<i; j++){//nums数组下标
if(nums[i]>nums[j])
dp[i] = Math.max(dp[i], dp[j]+1);
}
}
int ans=0;
for(int i=0; i<len; i++){
ans = Math.max(ans, dp[i]);
}
return ans;
}
}
152. 乘积最大子数组
小姐姐刷题-Leetcode 152 乘积最大子数组 动态规划_哔哩哔哩_bilibili
class Solution {
public int maxProduct(int[] nums) {
int ans = Integer.MIN_VALUE;
int len = nums.length;
int[] cur_max = new int[len];
int[] cur_min = new int[len];
cur_max[0]=cur_min[0]=nums[0];
for(int i=1; i<len; i++){
cur_max[i]=Math.max(nums[i]*cur_max[i-1], nums[i]*cur_min[i-1]);
cur_max[i]=Math.max(nums[i], cur_max[i]);
cur_min[i]=Math.min(cur_min[i-1]*nums[i], cur_max[i-1]*nums[i]);
cur_min[i]=Math.min(cur_min[i], nums[i]);
}
for(int i=0; i<len; i++){
ans = Math.max(ans, cur_max[i]);
}
return ans;
}
}
多维动态规划
62. 不同路径
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
if(i==0 || j==0) dp[i][j]=1;
}
}
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
64. 最小路径和
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[][] dp = new int[m][n];
dp[0][0] = grid[0][0];
for(int i=1; i<m; i++){
dp[i][0]=dp[i-1][0]+grid[i][0];
}
for(int j=1; j<n; j++){
dp[0][j]=dp[0][j-1]+grid[0][j];
}
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1])+grid[i][j];
}
}
return dp[m-1][n-1];
}
}
5. 最长回文子串(⭐)
动态规划:O(N^2)
class Solution {
public String longestPalindrome(String s) {
char[] chars = s.toCharArray();
int len = chars.length;
if(len==1 || len==0) return s;
boolean[][] dp = new boolean[len][len];
int start = 0;
int maxLen = 1;
for(int i=0; i<len; i++){
for(int j=0; j<len; j++){
if(i==j) dp[i][j]=true;
}
}
for(int j=1; j<len; j++){
for(int i=0; i<j; i++){
if(chars[i]!=chars[j])
dp[i][j]=false;
else{
//i和j挨着,说明i和j对应的字符中间只有一个字符,直接判断
if(j==i+1) dp[i][j]=true;
//i和j不挨着,说明i和j对应的字符中间多于一个字符,用数组递推
if(j>i+1) dp[i][j]=dp[i+1][j-1];
}
if(dp[i][j] && j-i+1>maxLen){
start=i;
maxLen=j-i+1;
}
}
}
return s.substring(start, start+maxLen);
}
}
暴力:O(N^3)
class Solution {
public String longestPalindrome(String s) {
char[] chars = s.toCharArray();
int len = chars.length;
if(len==1 || len==0) return s;
int start = 0;
int maxLen = 1;
for(int i=0; i<len-1; i++){
for(int j=1; j<len; j++){
if(j+1-i>maxLen && isPalindrome(chars, i, j)){
start=i;
maxLen=j+1-i;
}
}
}
return s.substring(start, start+maxLen);
}
public boolean isPalindrome(char[] chars, int left, int right){
while(left<right){
if(chars[left]==chars[right]){
left++;
right--;
}else
return false;
}
return true;
}
}
1143. 最长公共子序列(⭐)
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int l_len = text1.length();
int r_len = text2.length();
char[] l_chars = text1.toCharArray();
char[] r_chars = text2.toCharArray();
int[][] dp = new int[l_len+1][r_len+1];
for(int i=0; i<l_len; i++){
for(int j=0; j<r_len; j++){
if(i==0 || j==0)
dp[i][j]=0;
}
}
for(int i=1; i<l_len+1; i++){
for(int j=1; j<r_len+1; j++){
if(l_chars[i-1]==r_chars[j-1])
dp[i][j] = dp[i-1][j-1]+1;
else
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
}
}
return dp[l_len][r_len];
}
}
72. 编辑距离
class Solution {
public int minDistance(String word1, String word2) {
int l_len = word1.length();
int r_len = word2.length();
char[] l_chars = word1.toCharArray();
char[] r_chars = word2.toCharArray();
int[][] dp = new int[l_len+1][r_len+1];
for(int i=0; i<=l_len; i++){
for(int j=0; j<=r_len; j++){
if(i==0 || j==0) dp[i][j] = i==0 ? j : i;
}
}
for(int i=1; i<=l_len; i++){
for(int j=1; j<=r_len; j++){
if(l_chars[i-1] != r_chars[j-1]){
dp[i][j] = Math.min(dp[i][j-1], dp[i-1][j])+1;
dp[i][j] = Math.min(dp[i][j], dp[i-1][j-1]+1);
}else
dp[i][j]=dp[i-1][j-1];
}
}
return dp[l_len][r_len];
}
}