最长上升子序列 (简单dp+二分)

本文介绍了一种寻找给定序列中最长递增子序列的算法,并提供了两种不同复杂度的实现方案,一种为O(n^2)的动态规划方法,另一种为O(n log n)的高效算法。

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1a2, ..., aN) be any sequence ( ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8). 

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

O(n*n):递推公式dp[i]=max(1,dp[j]+1),j<i,ans=max(ans,dp[i]);

#include<bits/stdc++.h>
using namespace std;
int a[1005],dp[1005];
int main()
{
    int n;
    while(scanf("%d",&n)==1)
    {
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            dp[i]=1;
            for(int j=1;j<i;j++)
                if(a[i]>a[j]) dp[i]=max(dp[i],dp[j]+1);
            ans=max(ans,dp[i]);
        }
        printf("%d\n",ans);
    }
}

O(nlogn): dp[i]表示为长度为i+1的最长上升子序列中末尾元素的最小值(初始值为INT_MAX)

#include<bits/stdc++.h>
using namespace std;
int dp[10005];
int main()
{
    int n,m;
    while(scanf("%d",&n)==1)
    {
        fill(dp,dp+n,INT_MAX);
        for(int i=0;i<n;i++)
        {
            scanf("%d",&m);
            *lower_bound(dp,dp+n,m)=m;
        }
        printf("%d\n",lower_bound(dp,dp+n,INT_MAX)-dp);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值