[线段树带限制维护] Naive Operations HDU - 6315

本文介绍了一个使用线段树进行优化的问题实现方案。通过维护区间内的最小值和计数器来减少复杂度,并实现了addlr和querylr操作。讨论了技巧性的降低复杂度方法,并对比了使用scanf与cin的时间效率。

http://acm.hdu.edu.cn/showproblem.php?pid=6315

给了一堆分母
add l r 区间每个值加1
query lr 查询 l r 每个数据 val/b 向下取正

第一次写了线段树 访问每个点。。。n^2 也是醉了
算是技巧题 第一次做还真是不知道可以 这样减低复杂度

另外试了一下 scanf cin 一个800ms 一个2800ms

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map> 
using namespace std;
typedef long long ll;

const int maxn=100000+5;
int b[maxn];

struct node{
    int add;
    int ci;
    int val;
}tree[maxn<<2];


void build(int l,int r,int rt){
    if(l==r){
        tree[rt].add=0;
        tree[rt].val=0;
        tree[rt].ci=b[l];
        return ;
    }
    int m=(l+r)>>1;
    build(l,m,rt<<1);
    build(m+1,r,rt<<1|1);

    tree[rt].ci=min(tree[rt<<1].ci,tree[rt<<1|1].ci);
    tree[rt].add=0;
    tree[rt].val=0;
}

void pushdown(int rt){
    tree[rt<<1].ci+=tree[rt].add;
    tree[rt<<1|1].ci+=tree[rt].add;

    tree[rt<<1].add+=tree[rt].add;
    tree[rt<<1|1].add+=tree[rt].add;

    tree[rt].add=0;
}

void update(int L,int R,int l,int r,int rt,bool ok){
    if(L<=l&&R>=r){
        if(ok){//ok防止下一次访问 重复减去
            tree[rt].ci--;
            tree[rt].add--;
        }
        if(tree[rt].ci>0) return;
        if(l==r){
            if(tree[rt].ci==0){
                tree[rt].val++;
                tree[rt].ci=b[l];
                tree[rt].add=0;
                return ;
            }
        }
        ok=0;
    }
    if(tree[rt].add!=0) pushdown(rt);//不断推 直到cishu==0 更新树
    int m=(l+r)>>1;
    if(L<=m) update(L,R,l,m,rt<<1,ok);
    if(R>m) update(L,R,m+1,r,rt<<1|1,ok);

    tree[rt].ci=min(tree[rt<<1].ci,tree[rt<<1|1].ci);// 推回去很重要
    tree[rt].val=tree[rt<<1].val+tree[rt<<1|1].val;// 第一次写 忘记维护回去 cishu了
}

int query(int L,int R,int l,int r,int rt){
    if(L<=l&&R>=r){
        return tree[rt].val;
    }
    int m=(l+r)>>1;
    int res=0;
    if(L<=m) res+=query(L,R,l,m,rt<<1);
    if(R>m)  res+=query(L,R,m+1,r,rt<<1|1);
    return res;
}

int main(){
    int n,m,l,r;
    char cmd[10];
    while(cin>>n>>m){
        for(int i=1;i<=n;i++){
            scanf("%d",&b[i]);
        }
    //  memset(tree,0,sizeof(tree));
        build(1,n,1);
        for(int i=1;i<=m;i++){
            scanf("%s %d%d",cmd,&l,&r);
            if(cmd[0]=='a'){
                update(l,r,1,n,1,1);
            }
            else{
                printf("%d\n",query(l,r,1,n,1));
            }
        }
    }
    return 0;
}
(1)普通用户端(全平台) 音乐播放核心体验: 个性化首页:基于 “听歌历史 + 收藏偏好” 展示 “推荐歌单(每日 30 首)、新歌速递、相似曲风推荐”,支持按 “场景(通勤 / 学习 / 运动)” 切换推荐维度。 播放页功能:支持 “无损音质切换、倍速播放(0.5x-2.0x)、定时关闭、歌词逐句滚动”,提供 “沉浸式全屏模式”(隐藏冗余控件,突出歌词与专辑封面)。 多端同步:自动同步 “播放进度、收藏列表、歌单” 至所有登录设备(如手机暂停后,电脑端打开可继续播放)。 音乐发现与管理: 智能搜索:支持 “歌曲名 / 歌手 / 歌词片段” 搜索,提供 “模糊匹配(如输入‘晴天’联想‘周杰伦 - 晴天’)、热门搜索词推荐”,结果按 “热度 / 匹配度” 排序。 歌单管理:创建 “公开 / 私有 / 加密” 歌单,支持 “批量添加歌曲、拖拽排序、一键分享到社交平台”,系统自动生成 “歌单封面(基于歌曲风格配色)”。 音乐分类浏览:按 “曲风(流行 / 摇滚 / 古典)、语言(国语 / 英语 / 日语)、年代(80 后经典 / 2023 新歌)” 分层浏览,每个分类页展示 “TOP50 榜单”。 社交互动功能: 动态广场:查看 “关注的用户 / 音乐人发布的动态(如‘分享新歌感受’)、好友正在听的歌曲”,支持 “点赞 / 评论 / 转发”,可直接点击动态中的歌曲播放。 听歌排行:个人页展示 “本周听歌 TOP10、累计听歌时长”,平台定期生成 “全球 / 好友榜”(如 “好友中你本周听歌时长排名第 3”)。 音乐圈:加入 “特定曲风圈子(如‘古典音乐爱好者’)”,参与 “话题讨论(如‘你心中最经典的钢琴曲’)、线上歌单共创”。 (2)音乐人端(创作者中心) 作品管理: 音乐上传:支持 “无损音频(FLAC/WAV)+ 歌词文件(LRC)+ 专辑封面” 上传,填写 “歌曲信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值