对抗样本文献阅读2

1、NESTEROV ACCELERATED GRADIENT AND SCALE INVARIANCE FOR ADVERSARIAL ATTACKS(ICLR)
contribution:Nesterov Iterative Fast Gradient Sign Method (NI-FGSM) and Scale-Invariant attack Method (SIM)
preliminary

  • Fast Gradient Sign Method (FGSM).
  • Iterative Fast Gradient Sign Method (I-FGSM)
  • Projected Gradient Descent (PGD)
  • Momentum Iterative Fast Gradient Sign Method (MI-FGSM)
  • Diverse Input Method (DIM)
  • Translation-Invariant Method (TIM)
  • Carlini & Wagner attack (C&W).

defence methods

  • Adversarial Training.
  • Input Modification.

methodology
motivation: And the adversarial examples can be viewed as the training parameters of the model. Then in the testing phase, the black-box models to evaluate the adversarial examples can be viewed as the testing data of the model.From the perspective of the optimization, the transferability of the adversarial examples is similar with the generalization ability of the trained models.
从上述角度出发,我们迁移模型泛化中方法到对抗样本迁移性增强当中,而模型泛化能力增强的方法主要有两类组成:1.更好的优化算法(ADAM优化器等)2、数据增强
因此,对抗样本迁移的方法对应的为:1、更好的优化算法(将动量引入到对抗样本优化生成中,alleviates the trade-off between the attack ability and the transferability)2、模型增强(在攻击时选择更多的模型进行攻击),对应到本文中则是NI-FGSMSIM
NI-FGSM
在介绍NI-FGSM前,需要介绍Nesterov Accelerated Gradient方法,传统的动量方法的公式如下:
在这里插入图片描述
但是这个时候我们可以思考在对梯度更新时,我们将 v t v_t vt的更新公式代入位置更新中得到
x t = x t − 1 − v t = x t − 1 − γ v t − 1 − η t ∇ f t x_t = x_{t-1} - v_t = x_{t-1} - \gamma v_{t-1} - \eta_t \nabla f_{t} xt=xt1v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值