【Week-P8】YOLOv5-C3模块实现天气识别

说明:
(1)本次学习着重学习YOLO-C3模块,并比较不同数量下的C3模块对训练结果的test_acc有何影响;
(2)注意:

  • 模型每增加一个C3模块,forward()函数内部也同步增加一个C3模块;这是因为init里是定义,forward是调用;
  • 每次的训练情况在本文的【总结】部分有详细说明。

一、环境配置

● 语言环境:Python3.7.8
● 编译器:VSCode
● 数据集:天气识别数据集
● 深度学习环境:Pytorch
○ torch 1.13.1
○ torchvision 0.14.1
○ torchsummary 1.5.1

# Yolo-C3模块学习
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

print("--------------------------1. 配置环境------------------------")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device: ", device)

在这里插入图片描述

二、准备数据

2.1 打印classeNames列表,显示每个文件所属的类别名称
2.2 打印归一化后的类别名称,01
2.3 划分数据集,划分为训练集&测试集,torch.utils.data.DataLoader()参数详解
2.4 检查数据集的shape

print("--------------------------2.1 导入本地数据------------------------")
import os,PIL,random,pathlib
data_dir = 'D:/jupyter notebook/DL-100-days/datasets/P3-天气识别/weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[5] for path in data_paths]
print("classesName: ", classeNames)
print("--------------------------2.2 数据集归一化------------------------")
# 关于transforms.Compose的更多介绍可以参考:https://blog.youkuaiyun.com/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("D:/jupyter notebook/DL-100-days/datasets/P3-天气识别/weather_photos/",transform=train_transforms)
print("tota_data: ", total_data)
print("class_to_idx: ", total_data.class_to_idx)
print("--------------------------2.3 划分数据集------------------------")
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print("train_dataset: ", train_dataset)
print("test_dataset: ", test_dataset)

batch_size = 4
train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_siz
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值