文章目录
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
说明:
(1)本次学习使用VGG-16模型完成,调用官方接口得到VGG-16预训练模型,然后修改classifier模块的第6层;
(2)本次学习调用官方动态学习率接口完成训练;
(3)本次学习需要调整调整参数,使test_accuracy的值达到60%或以上(当前训练40个epoch的test_accuracy是16.7%);
(4)本次学习使用的数据集与Week T6 - 好莱坞明星识别(CNN)的数据集是一致的,共有17位好莱坞明星的脸部照片;
一、环境配置
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
import sys
from datetime import datetime
print("---------------------1.配置环境------------------")
print("Start time: ", datetime.today())
print("Pytorch version: " + torch.__version__)
print("Python version: " + sys.version)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
二、准备数据
2.1 打印
classNames
列表,显示每个文件所属的类别名称
2.2 打印归一化后的类别名称,0
或1
2.3 划分数据集,划分为训练集&测试集,torch.utils.data.DataLoader()
参数详解
2.4 检查数据集的shape
import os,PIL,random,pathlib
print("---------------------2.1 导入数据------------------")
data_dir = 'D:/jupyter notebook/DL-100-days/datasets/hollywood-celebraties/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("\\")[5] for path in data_paths]
print("classNames:", classNames)
# 关于transforms.Compose的更多介绍可以参考:https://blog.youkuaiyun.com/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
# transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder("D:/jupyter notebook/DL-100-days/datasets/hollywood-celebraties/",transform=train_transforms)
print("total_data:", total_data)
print("total_data.class_to_idx: ", total_data.class_to_idx)
print("---------------------2.2 划分数据集------------------")
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print("train_dataset: ", train_dataset)
print("test_dataset: ", test_dataset)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
三、搭建网络结构
VGG-16结构说明:
● 13个卷积层(Convolutional Layer),分别用blockX_convX表示;
● 3个全连接层(Fully connected Layer),用classifier表示;
● 5个池化层(Pool layer)。
'''
调用官方VGG-16模型, 修改classifier模块的第6层
'''