Chapter 6 : Applications of Definite Integrals

本文探讨了通过切片和绕轴旋转来计算几何固体体积的方法,介绍了如何利用圆柱壳法求体积,以及平面曲线长度、质心坐标、旋转曲面面积等概念。通过定义任意基底的圆柱固体体积,引出了切片法计算非圆柱形固体体积的积分公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

6.1 Volumes by Slicing and Rotation About an Axis

In this section we define volumes of solids whose cross-sections are plane regions. A cross-section of a solid S is the plane region formed by intersecting S with a plane (Figure 6.1).

Suppose we want to find the volume of a solid S like the one in Figure 6.1. We begin by extending the definition of a cylinder from classical geometry to cylindrical solids with arbitrary bases (Figure 6.2). If the cylindrical solid has a known base area A and height h, then the volume of the cylindrical solid is

\mathbf{​{\color{Red} Volume=area\times height=A\cdot h}}

This equation forms the basis for defining the volumes of many solids that are not cylindrical by the method of slicing. If the cross-section of the solid S at each point in the interval [a, b] is a region R(x) of area A(x), and A is a continuous function of x, we can define and calculate the volume of the solid S as a definite integral in the following way. 


6.2 Volumes by Cylindrical Shells



6.3 Lengths of Plane Curves


6.4 Moments and Centers of Mass

The coordinates of the centroid of a differentiable plane curve are 

\bar x=\frac{\int yds}{length}             \bar y=\frac{\int xds}{length}


6.5 Areas of Surfaces of Revolution and the Theorems of Pappus

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值