Chapter 2 :Limits and Continuity

本文探讨了数学中各种函数的连续性,包括理性函数的斜渐近线、复合函数的连续性条件、指数法则及洛伦兹收缩公式等核心概念。通过具体实例解析,帮助读者理解不同函数在特定点的连续性,并介绍了如何使用极限计算来确认曲线的垂直切线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​If the degree of the numerator of a rational function is one greater than the degree of the denominator, the graph has an oblique(slanted)asymptote. We find an equation for the asymptote by dividing numerator by denominator to express f as a linear function plus a remainder that goes to zero as x\rightarrow\pm\infty. Here is an example.


The function f(x) = x is called the identity function.

All composites of continuous functions are continuous.


The rules of exponents tell us that a^0=1 if a is any number different from zero. They also tell us that 0^n=0 if n is any positive number.

0^0=1 .


max { a, b } = (a+b)/2 + |a+b|/2

min { a, b } = (a+b)/2 - |a+b|/2


Answer:


Answer:


Answer:


At what points are the following functions continuous?

1. \frac{xtanx}{x^2+1}

2. \sqrt{2x+3} 3. \sqrt[4]{3x-1}

Answer:

  1. x\ne k\pi-\frac{\pi}{2} (k is any integer)

  2. x\geq-\frac{3}{2}

  3. x\geq\frac{1}{3}


     

    Lorentz contraction

    In relativity theory, the length of an object, say a rocket, appears to an observer to depend on the speed at which the object is traveling with respect to the observer. If the observer measures the rocket's length as at rest, then at speed \upsilon the length will appear to be

    L=L_{0}\sqrt{1-\frac{\nu^2}{c^2}} .

    This equation is the Lorentz contraction formula. Here, c is the speed of light in a vacuum.


Answer:


Graph the following curves, where do the graph appear to have vertical tangents? Confirm your findings with limit calculations.

y=x^{\frac{2}{5}}     y=x^{\frac{4}{5}}   y=4x^{\frac{2}{5}}-2x          y=x^{\frac{5}{3}}-5x^{\frac{2}{3}}           y=\sqrt{\left| 4-x \right|}

Answer:


On what intervals are the following functions continuous?

g(x)=x^{\frac{3}{4}}    k(x)=x^{-\frac{1}{6}}

Answer:

\left[ 0,\infty \right]     \left(0,\infty\right)


 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值