玩转书生浦语-书生孔明-MindSerach(API调用)

让书生浦语创作根据描述创作一首五言律诗

书生——孔明:

 过程详细,作为一个私人家教

编程能力满足基本需求是没问题的

还能进pdf行文档分析

MindSearch使用案例

API调用

1、首先进行token创建

查看支持的模型及使用方法:

查看能够使用的次数:

API 调用实例:

### 书生浦语大模型作业实现指南 #### 1. 环境配置与模型加载 为了完成与书生浦语大模型相关的作业,首先需要确保基础环境已正确配置。可以通过指定 `local_llm_path` 参数来加载本地模型文件夹路径或 Huggingface 上的模型名称,例如 `"internlm/internlm2-chat-7b"` 或 `"qwen/qwen-7b-chat-int8"` [^1]。此外,还需设置参数 `local_llm_max_text_length`,以定义模型可接受的最大文本长度。 对于具体操作步骤,可以参考如下 Python 示例代码: ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name_or_path = "internlm/internlm2-chat-7b" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) max_input_length = model.config.max_position_embeddings print(f"Maximum input length supported by the model: {max_input_length}") ``` #### 2. 数据准备与微调策略 在实际应用中,可能需要对书生浦语大模型进行微调以适配特定任务需求。常见的微调方式包括 **增量预训练** 和 **指令跟随微调** [^3]。前者适用于引入新的领域知识(如行业术语、技术文档),后者则用于优化模型的对话能力。 以下是针对不同场景的数据准备建议: - 如果目标是提升模型的知识覆盖范围,则应收集相关领域的文章、书籍或其他结构化数据作为训练集; - 若旨在增强交互效果,则需构建高质量的人机对话样本集合。 #### 3. 功能开发实例——图文创作工具 利用书生浦语及其衍生版本(如浦语·灵笔2),开发者能够快速搭建具备先进图文生成能力的应用程序 [^2]。下面展示了一个简单的 CLI 接口设计思路,允许用户输入自定义主题并获得相应的文字描述及配套插图链接。 ```python def generate_article_with_images(prompt): response = model.generate( tokenizer.encode(prompt, return_tensors="pt"), max_new_tokens=500, num_beams=4, no_repeat_ngram_size=2 ) decoded_output = tokenizer.decode(response[0], skip_special_tokens=True) article_content, image_url_list = parse_response(decoded_output) # 自定义解析逻辑 return {"text": article_content, "images": image_url_list} if __name__ == "__main__": user_prompt = input("请输入您的创意方向:") result = generate_article_with_images(user_prompt) print(result["text"]) for idx, img_link in enumerate(result["images"]): print(f"[Image {idx+1}] URL: {img_link}") ``` > 注:以上仅为伪代码框架示意,请根据实际情况调整函数内部实现细节以及依赖库的选择。 #### 4. 常见问题分析与改进措施 尽管书生浦语系列表现出众,但在某些复杂查询情境下仍可能存在不足之处 [^5]。比如,当面对高度相似的信息源时,可能会倾向于优先选用最早录入的内容而忽略后续更新更优解的可能性。对此现象可通过以下方法缓解: - 扩展检索范围至整个数据库而非局限于前几条记录; - 结合外部搜索引擎动态补充实时资讯; - 定期维护知识库内容保持时效性和准确性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值