Weakly Supervised Semantic Segmentation list

本文档提供了弱监督语义分割领域的全面综述,包括使用边界框、单次分割、图像/视频标签等不同监督类型的研究工作。涵盖CVPR、ICCV等顶级会议论文,涉及Mask-RCNN、Graphcut等技术,以及DAVIS挑战赛等内容。
部署运行你感兴趣的模型镜像

Weakly Supervised Semantic Segmentation list

文章转自Github:https://github.com/JackieZhangdx/WeakSupervisedSegmentationList

========================================================

This repository contains lists of state-or-art weakly supervised semantic segmentation works. Papers and resources are listed below according to supervision types.

There are some personal views and notes, just ignore if not interested.

Last update 2019/4

  • Paper list
    • instance
    • box
    • one-shot
    • others
  • Resources

some unsupervised segment proposal methods and datasets here.

CVPR 2018 Tutorial : WSL web&ppt, Part1 ,Part2

Typical weak supervised segmentation problems
NoSupervisionDifficultyDomainCore issues
1Bounding boxmiddleannotated classestransfer learning
2One-shot segmentmiddlesimilar objectsone-shot learning
3Image/video labelhardannotated classestransfer learning
4Othersn/an/an/a

1.Bounding box supervision

2.One-Shot segmentation supervision

DAVIS Challenge: http://davischallenge.org/
Davis17/18(Semi-supervised Video segmentation task), Davis16 is video salient object segmentation without the first frame annotations.

3.Image/video label supervision

Resource

Arxiv paper

3.1 Deep activation

Propagate methodPapers
Global Max Pooling(GMP)Is object localization for free? - Weakly-supervised learning with convolutional neural networks,CVPR 2015
Global Average Pooling(GAP)Learning Deep Features for Discriminative Localization CVPR 2016
Log-sum-exponential Pooling(LSE)ProNet: Learning to Propose Object-specific Boxes for Cascaded Neural Networks,CVPR 2016
Global Weighted Rank Pooling(GWRP)SEC ECCV 2016
Global rank Max-Min Pooling(GRP)WILDCAT, CVPR 2017

3.2 Weakly supervised Detection / Localization(TODO)

4.Other supervision

Points
Scribbles

5.Close Related or unpublished work

您可能感兴趣的与本文相关的镜像

GPT-SoVITS

GPT-SoVITS

AI应用

GPT-SoVITS 是一个开源的文本到语音(TTS)和语音转换模型,它结合了 GPT 的生成能力和 SoVITS 的语音转换技术。该项目以其强大的声音克隆能力而闻名,仅需少量语音样本(如5秒)即可实现高质量的即时语音合成,也可通过更长的音频(如1分钟)进行微调以获得更逼真的效果

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值