#Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("data/",one_hot=True)
import tensorflow as tf
#Parameters
learning_rate = 0.001
batch_size = 100
display_step = 1
model_path = "save/model.ckpt"
#Network Parameters
n_hidden_1 = 256 #1st layer number of features
n_hidden_2 = 256 #2nd layer number of features
n_input = 784 #MNIST data input (img shape:28*28)
n_classes = 10 #MNIST total classes (0-9 digits)
#tf Graph input
x = tf.placeholder("float",[None,n_input])
y = tf.placeholder("float",[None,n_classes])
#Creat model
def mutilayer_perceptron(x,weights,biases):
#Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x,weights['h1']),biases['b1'])
layer_1 = tf.nn.relu(layer_1)
#Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1,weights['h2']),biases['b2'])
layer_2 = tf.nn.relu(layer_2)
#Output layer with linear activation
神经网络模型的保存和读取(基于Mnist数据集)
最新推荐文章于 2024-06-06 21:14:17 发布