基础算法模板——排序
1. 快速排序
void quick_sort(int q[], int l, int r){
if(l >= r)
return ;
int i = l - 1, j = r + 1, x = q[l + r >> 1];
while(i < j){
do i++; while(q[i] < x);
do j--; while(q[j] > x);
if(i < j ) swap(q[i] , q[j]);
}
quick_sort(q , l , j) ;
quick_sort(q, j + 1 , r ) ;
}
利用快速排序找到第k小的数
int quick_sort(int q[], int l, int r, int k){
if(l >=k) return q[l];
int i = l - 1, j = r + 1, x = q[l+r >> 1];
while(i < j){
do i++; while(q[i] < x);
do j--; while(q[j] > x);
if(i < j) swap(q[i],q[j]);
}
if(j-l+1 >=k) return quick_sort(q, l, j, k);
else return quick_sort(q, j + 1;, r, k - (j - l + 1));
}
2.归并排序
int a[N], tmp[N];
void merge_sort(int q[], int l, int r)
{
if (l >= r) return;
int mid = l + r >> 1;
merge_sort(q, l, mid), merge_sort(q, mid + 1, r);
int k = 0, i = l, j = mid + 1;
while (i <= mid && j <= r)
if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
else tmp[k ++ ] = q[j ++ ];
while (i <= mid) tmp[k ++ ] = q[i ++ ];
while (j <= r) tmp[k ++ ] = q[j ++ ];
for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}
归并排序的应用——逆序对的数量
int a[N], tmp[N];
LL merge_sort(int q[], int l, int r)
{
if (l >= r) return 0;
int mid = l + r >> 1;
LL res = merge_sort(q, l, mid) + merge_sort(q, mid + 1, r);
int k = 0, i = l, j = mid + 1;
while (i <= mid && j <= r)
if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
else
{
res += mid - i + 1;
tmp[k ++ ] = q[j ++ ];
}
while (i <= mid) tmp[k ++ ] = q[i ++ ];
while (j <= r) tmp[k ++ ] = q[j ++ ];
for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
return res;
}