Min-max theorem

这篇博客讨论了厄尔米特矩阵的瑞利商及其与最小最大定理的关系。证明了对于厄尔米特矩阵A,其特征值λk可以通过寻找特定子空间中瑞利商的最大值和最小值来确定,从而验证了最小最大定理。同时,介绍了奇异值的概念,并指出厄尔米特矩阵的奇异值与瑞利商之间的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

瑞利商

A\mathbf{A}A是厄尔米特矩阵(A=AH(\mathbf{A}=\mathbf{A}^H(A=AH)
RA(x):Cn\{0}→RR_{\mathbf{A}}\left(\mathbf{x}\right):\mathbb{C}^n\backslash\left\{\mathbf{0}\right\}\to\mathbb{R}RA(x):Cn\{0}R定义为
RA=(Ax,x)(x,x) R_{\mathbf{A}}=\frac{\left(\mathbf{Ax},\mathbf{x}\right)}{\left(\mathbf{x},\mathbf{x}\right)} RA=(x,x)(Ax,x)

Min-max theorem

A\mathbf{A}A是厄尔米特矩阵
A\mathbf{A}A的特征值为λ1≤λ2≤⋯≤λn\lambda_1\le \lambda_2\le \cdots\le\lambda_nλ1λ2λn

λk=min⁡U{max⁡x{RA(x)∣x∈U,x≠0}∣dim⁡(U)=k} \lambda_k=\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\} λk=Umin{xmax{RA(x)xU,x=0}dim(U)=k}
λk=max⁡U{min⁡x{RA(x)∣x∈U,x≠0}∣dim⁡(U)=n−k+1} \lambda_k=\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\} λk=Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}

证明:
因为A\mathbf{A}A是厄尔米特矩阵,所以可以对角化
A\mathbf{A}A两两正交的单位特征向量为u1,⋯ ,un\mathbf{u}_1,\cdots,\mathbf{u}_nu1,,un
Aui=λiui,(ui,uj)=0,(uiui)=1\mathbf{A}\mathbf{u}_i=\lambda_i\mathbf{u}_i,\left(\mathbf{u}_i,\mathbf{u}_j\right)=0,\left(\mathbf{u}_i\mathbf{u}_i\right)=1Aui=λiui,(ui,uj)=0,(uiui)=1其中i≠ji\neq ji=j

先证明第一个等式
dim⁡(U)=k\operatorname{dim}\left(\mathbf{U}\right)=kdim(U)=k
dim⁡(U)+dim⁡(span⁡{uk,⋯ ,un})=k+n−k+1=n+1>n\operatorname{dim}\left(\mathbf{U}\right)+\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}\right)=k+n-k+1=n+1>ndim(U)+dim(span{uk,,un})=k+nk+1=n+1>n
所以
U∩span⁡{uk,⋯ ,un}≠{0}\mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}\neq\left\{\mathbf{0}\right\}Uspan{uk,,un}={0}
所以存在v≠0\mathbf{v}\neq 0v=0
使得v∈U∩span⁡{uk,⋯ ,un}\mathbf{v}\in \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}vUspan{uk,,un}

v=∑i=knαiui\mathbf{v}=\sum_{i=k}^n \alpha_i\mathbf{u}_iv=i=knαiui

RA(v)=∑i=knλiαi2∑i=knαi2≥λk R_{\mathbf{A}}\left(\mathbf{v}\right)=\frac{\sum_{i=k}^n\lambda_i\alpha_i^2}{\sum_{i=k}^n\alpha_i^2}\ge \lambda_k RA(v)=i=knαi2i=knλiαi2λk
所以
max⁡{RA(x)∣x∈U}≥RA(v)≥λk\max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U}\right\}\ge R_{\mathbf{A}}\left(\mathbf{v}\right)\ge \lambda_kmax{RA(x)xU}RA(v)λk

因为对于任意的U\mathbf{U}U都是成立的
所以
min⁡U{max⁡x{RA(x)∣x∈U,x≠0}∣dim⁡(U)=k}≥λk \min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}\ge \lambda_k Umin{xmax{RA(x)xU,x=0}dim(U)=k}λk

接着证明反过来的
V=span⁡{u1,⋯ ,uk}\mathbf{V}=\operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}V=span{u1,,uk}

max⁡{RA(x)∣x∈V}≤λk \max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\le\lambda_k max{RA(x)xV}λk
于是
min⁡U{max⁡x{RA(x)∣x∈U,x≠0}∣dim⁡(U)=k}≤max⁡{RA(x)∣x∈V}≤λk \min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}\le \max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\le\lambda_k Umin{xmax{RA(x)xU,x=0}dim(U)=k}max{RA(x)xV}λk
所以
λk=min⁡U{max⁡x{RA(x)∣x∈U,x≠0}∣dim⁡(U)=k} \lambda_k=\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\} λk=Umin{xmax{RA(x)xU,x=0}dim(U)=k}

接着证明第二个等式
dim⁡(U)=n−k+1\operatorname{dim}\left(\mathbf{U}\right)=n-k+1dim(U)=nk+1
dim⁡(U)+dim⁡(span⁡{u1,⋯ ,uk})=n−k+1+k=n+1>n\operatorname{dim}\left(\mathbf{U}\right)+\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}\right)=n-k+1+k=n+1>ndim(U)+dim(span{u1,,uk})=nk+1+k=n+1>n
所以
U∩span⁡{u1,⋯ ,uk}≠{0}\mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}\neq\left\{\mathbf{0}\right\}Uspan{u1,,uk}={0}
所以存在v≠0\mathbf{v}\neq 0v=0
使得v∈U∩span⁡{uk,⋯ ,un}\mathbf{v}\in \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}vUspan{uk,,un}
v=∑i=1kαiui\mathbf{v}=\sum_{i=1}^k \alpha_i\mathbf{u}_iv=i=1kαiui

RA(v)=∑i=1kλiαi2∑i=1kαi2≤λk R_{\mathbf{A}}\left(\mathbf{v}\right)=\frac{\sum_{i=1}^k\lambda_i\alpha_i^2}{\sum_{i=1}^k\alpha_i^2}\le \lambda_k RA(v)=i=1kαi2i=1kλiαi2λk
所以
min⁡{RA(x)∣x∈U}≤RA(v)≤λk\min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U}\right\}\le R_{\mathbf{A}}\left(\mathbf{v}\right)\le \lambda_kmin{RA(x)xU}RA(v)λk
因为对于任意的U\mathbf{U}U都是成立的
所以
max⁡U{min⁡x{RA(x)∣x∈U,x≠0}∣dim⁡(U)=n−k+1}≤λk \max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}\le \lambda_k Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}λk

接着证明反过来的
V=span⁡{uk,⋯ ,un}\mathbf{V}=\operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}V=span{uk,,un}

min⁡{RA(x)∣x∈V}≥λk \min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\ge\lambda_k min{RA(x)xV}λk
于是
max⁡U{min⁡x{RA(x)∣x∈U,x≠0}∣dim⁡(U)=n−k+1}≥min⁡{RA(x)∣x∈V}≥λk \max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}\ge \min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\ge\lambda_k Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}min{RA(x)xV}λk
所以
λk=max⁡U{min⁡x{RA(x)∣x∈U,x≠0}∣dim⁡(U)=n−k+1} \lambda_k=\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\} λk=Umax{xmin{RA(x)xU,x=0}dim(U)=nk+1}

奇异值版

σk\sigma_kσkA\mathbf{A}A的奇异值

σk=min⁡S:dim⁡(S)=kmax⁡x∈S,∥x∥=1∥Ax∥ \sigma_k=\min_{\mathbf{S}:\operatorname{dim}\left(\mathbf{S}\right)=k}\max_{\mathbf{x}\in\mathbf{S},\|\mathbf{x}\|=1}\|\mathbf{Ax}\| σk=S:dim(S)=kminxS,x=1maxAx
σk=min⁡S:dim⁡(S)=n−k+1max⁡x∈S,∥x∥=1∥Ax∥ \sigma_k=\min_{\mathbf{S}:\operatorname{dim}\left(\mathbf{S}\right)=n-k+1}\max_{\mathbf{x}\in\mathbf{S},\|\mathbf{x}\|=1}\|\mathbf{Ax}\| σk=S:dim(S)=nk+1minxS,x=1maxAx

证明:
因为
σ(A)=λ(AHA) \sigma\left(\mathbf{A}\right)=\sqrt{\lambda\left(\mathbf{A}^H\mathbf{A}\right)} σ(A)=λ(AHA)
并且AHA\mathbf{A}^H\mathbf{A}AHA是一个厄尔米特矩阵,
然后证明起来就类似了,只不过要开根号

Make sure that we grade your HW based solely on your R code script. If we don’t see the correct results when we run your code, you will get 0 point for those questions. 1. Create a R function to show the central limit theorem. This function should have the following properties: - In the argument of the function, you have an option to consider poisson, exponential, uniform, normal distributions as the population distribution. - Depending on the choice of the population distribution in part (1), the function will receive extra argument(s) for the parameters of the distribution. For example, if a normal distri- bution is chosen, the mean and SD are needed in the function argument. Note that each distribution has a different parameter setting. - If the distribution is not selected from (“Normal”, “Poisson”, “Uniform”, “Exponential”), the function needs to print the following error message: check the distributional setting: consider ("Normal", "Poisson", "Uniform", "Exponential") and stop. - The function should give the summary statistics (minimum, 1st quartile, median, mean, 3rd quartile, maximum) of 1, 000 sample mean values for given n values (n = 10, 50, 100, 500). - The result should have the following statement at the beginning, for example, if a normal distribution with mean 1 and SD 0.5 was chosen: ‘‘For the Normal distribution, the central limit theorem is tested’’ where the term “Normal” is automatically inserted in the statement based on the argument. And the output should have the following form: For the Normal distribution, the central limit theorem is tested When n=10: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.5187 0.8930 1.0016 0.9993 1.1019 1.4532 When n=50: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.7964 0.9508 1.0010 0.9997 1.0493 1.2309 1 When n=100: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.8534 0.9679 0.9972 0.9992 1.0325 1.1711 When n=500: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9258 0.9836 1.0006 0.9997 1.0154 1.0678 I Using your own function, test the N(−1,0.52) and the Unif(−3,6) case.
06-05
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值