瑞利商
设A\mathbf{A}A是厄尔米特矩阵(A=AH(\mathbf{A}=\mathbf{A}^H(A=AH)
RA(x):Cn\{0}→RR_{\mathbf{A}}\left(\mathbf{x}\right):\mathbb{C}^n\backslash\left\{\mathbf{0}\right\}\to\mathbb{R}RA(x):Cn\{0}→R定义为
RA=(Ax,x)(x,x)
R_{\mathbf{A}}=\frac{\left(\mathbf{Ax},\mathbf{x}\right)}{\left(\mathbf{x},\mathbf{x}\right)}
RA=(x,x)(Ax,x)
Min-max theorem
设A\mathbf{A}A是厄尔米特矩阵
设A\mathbf{A}A的特征值为λ1≤λ2≤⋯≤λn\lambda_1\le \lambda_2\le \cdots\le\lambda_nλ1≤λ2≤⋯≤λn
则
λk=minU{maxx{RA(x)∣x∈U,x≠0}∣dim(U)=k}
\lambda_k=\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}
λk=Umin{xmax{RA(x)∣x∈U,x=0}∣dim(U)=k}
λk=maxU{minx{RA(x)∣x∈U,x≠0}∣dim(U)=n−k+1}
\lambda_k=\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}
λk=Umax{xmin{RA(x)∣x∈U,x=0}∣dim(U)=n−k+1}
证明:
因为A\mathbf{A}A是厄尔米特矩阵,所以可以对角化
设A\mathbf{A}A两两正交的单位特征向量为u1,⋯ ,un\mathbf{u}_1,\cdots,\mathbf{u}_nu1,⋯,un
即Aui=λiui,(ui,uj)=0,(uiui)=1\mathbf{A}\mathbf{u}_i=\lambda_i\mathbf{u}_i,\left(\mathbf{u}_i,\mathbf{u}_j\right)=0,\left(\mathbf{u}_i\mathbf{u}_i\right)=1Aui=λiui,(ui,uj)=0,(uiui)=1其中i≠ji\neq ji=j
先证明第一个等式
设dim(U)=k\operatorname{dim}\left(\mathbf{U}\right)=kdim(U)=k
dim(U)+dim(span{uk,⋯ ,un})=k+n−k+1=n+1>n\operatorname{dim}\left(\mathbf{U}\right)+\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}\right)=k+n-k+1=n+1>ndim(U)+dim(span{uk,⋯,un})=k+n−k+1=n+1>n
所以
U∩span{uk,⋯ ,un}≠{0}\mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}\neq\left\{\mathbf{0}\right\}U∩span{uk,⋯,un}={0}
所以存在v≠0\mathbf{v}\neq 0v=0
使得v∈U∩span{uk,⋯ ,un}\mathbf{v}\in \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}v∈U∩span{uk,⋯,un}
设v=∑i=knαiui\mathbf{v}=\sum_{i=k}^n \alpha_i\mathbf{u}_iv=∑i=knαiui
则
RA(v)=∑i=knλiαi2∑i=knαi2≥λk
R_{\mathbf{A}}\left(\mathbf{v}\right)=\frac{\sum_{i=k}^n\lambda_i\alpha_i^2}{\sum_{i=k}^n\alpha_i^2}\ge \lambda_k
RA(v)=∑i=knαi2∑i=knλiαi2≥λk
所以
max{RA(x)∣x∈U}≥RA(v)≥λk\max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U}\right\}\ge R_{\mathbf{A}}\left(\mathbf{v}\right)\ge \lambda_kmax{RA(x)∣x∈U}≥RA(v)≥λk
因为对于任意的U\mathbf{U}U都是成立的
所以
minU{maxx{RA(x)∣x∈U,x≠0}∣dim(U)=k}≥λk
\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}\ge \lambda_k
Umin{xmax{RA(x)∣x∈U,x=0}∣dim(U)=k}≥λk
接着证明反过来的
设V=span{u1,⋯ ,uk}\mathbf{V}=\operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}V=span{u1,⋯,uk}
则
max{RA(x)∣x∈V}≤λk
\max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\le\lambda_k
max{RA(x)∣x∈V}≤λk
于是
minU{maxx{RA(x)∣x∈U,x≠0}∣dim(U)=k}≤max{RA(x)∣x∈V}≤λk
\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}\le \max \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\le\lambda_k
Umin{xmax{RA(x)∣x∈U,x=0}∣dim(U)=k}≤max{RA(x)∣x∈V}≤λk
所以
λk=minU{maxx{RA(x)∣x∈U,x≠0}∣dim(U)=k}
\lambda_k=\min_{\mathbf{U}}\left\{\max_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=k\right\}
λk=Umin{xmax{RA(x)∣x∈U,x=0}∣dim(U)=k}
接着证明第二个等式
设dim(U)=n−k+1\operatorname{dim}\left(\mathbf{U}\right)=n-k+1dim(U)=n−k+1
dim(U)+dim(span{u1,⋯ ,uk})=n−k+1+k=n+1>n\operatorname{dim}\left(\mathbf{U}\right)+\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}\right)=n-k+1+k=n+1>ndim(U)+dim(span{u1,⋯,uk})=n−k+1+k=n+1>n
所以
U∩span{u1,⋯ ,uk}≠{0}\mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_1,\cdots,\mathbf{u}_k\right\}\neq\left\{\mathbf{0}\right\}U∩span{u1,⋯,uk}={0}
所以存在v≠0\mathbf{v}\neq 0v=0
使得v∈U∩span{uk,⋯ ,un}\mathbf{v}\in \mathbf{U}\cap \operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}v∈U∩span{uk,⋯,un}
设v=∑i=1kαiui\mathbf{v}=\sum_{i=1}^k \alpha_i\mathbf{u}_iv=∑i=1kαiui
则
RA(v)=∑i=1kλiαi2∑i=1kαi2≤λk
R_{\mathbf{A}}\left(\mathbf{v}\right)=\frac{\sum_{i=1}^k\lambda_i\alpha_i^2}{\sum_{i=1}^k\alpha_i^2}\le \lambda_k
RA(v)=∑i=1kαi2∑i=1kλiαi2≤λk
所以
min{RA(x)∣x∈U}≤RA(v)≤λk\min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U}\right\}\le R_{\mathbf{A}}\left(\mathbf{v}\right)\le \lambda_kmin{RA(x)∣x∈U}≤RA(v)≤λk
因为对于任意的U\mathbf{U}U都是成立的
所以
maxU{minx{RA(x)∣x∈U,x≠0}∣dim(U)=n−k+1}≤λk
\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}\le \lambda_k
Umax{xmin{RA(x)∣x∈U,x=0}∣dim(U)=n−k+1}≤λk
接着证明反过来的
设V=span{uk,⋯ ,un}\mathbf{V}=\operatorname{span}\left\{\mathbf{u}_k,\cdots,\mathbf{u}_n\right\}V=span{uk,⋯,un}
则
min{RA(x)∣x∈V}≥λk
\min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\ge\lambda_k
min{RA(x)∣x∈V}≥λk
于是
maxU{minx{RA(x)∣x∈U,x≠0}∣dim(U)=n−k+1}≥min{RA(x)∣x∈V}≥λk
\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}\ge \min \left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{V}\right\}\ge\lambda_k
Umax{xmin{RA(x)∣x∈U,x=0}∣dim(U)=n−k+1}≥min{RA(x)∣x∈V}≥λk
所以
λk=maxU{minx{RA(x)∣x∈U,x≠0}∣dim(U)=n−k+1}
\lambda_k=\max_{\mathbf{U}}\left\{\min_{\mathbf{x}}\left\{R_{\mathbf{A}}\left(\mathbf{x}\right)|\mathbf{x}\in\mathbf{U},\mathbf{x}\neq 0\right\}|\operatorname{dim}\left(\mathbf{U}\right)=n-k+1\right\}
λk=Umax{xmin{RA(x)∣x∈U,x=0}∣dim(U)=n−k+1}
奇异值版
设σk\sigma_kσk是A\mathbf{A}A的奇异值
则
σk=minS:dim(S)=kmaxx∈S,∥x∥=1∥Ax∥
\sigma_k=\min_{\mathbf{S}:\operatorname{dim}\left(\mathbf{S}\right)=k}\max_{\mathbf{x}\in\mathbf{S},\|\mathbf{x}\|=1}\|\mathbf{Ax}\|
σk=S:dim(S)=kminx∈S,∥x∥=1max∥Ax∥
σk=minS:dim(S)=n−k+1maxx∈S,∥x∥=1∥Ax∥
\sigma_k=\min_{\mathbf{S}:\operatorname{dim}\left(\mathbf{S}\right)=n-k+1}\max_{\mathbf{x}\in\mathbf{S},\|\mathbf{x}\|=1}\|\mathbf{Ax}\|
σk=S:dim(S)=n−k+1minx∈S,∥x∥=1max∥Ax∥
证明:
因为
σ(A)=λ(AHA)
\sigma\left(\mathbf{A}\right)=\sqrt{\lambda\left(\mathbf{A}^H\mathbf{A}\right)}
σ(A)=λ(AHA)
并且AHA\mathbf{A}^H\mathbf{A}AHA是一个厄尔米特矩阵,
然后证明起来就类似了,只不过要开根号