感谢:https://tensorflow.google.cn/api_docs/python/tf/placeholder
tf.placeholder(
dtype,
shape=None,
name=None
)
Inserts a placeholder for a tensor that will be always fed.
placeholder是TensorFlow中的占位符,暂时存储变量。TensorFlow如果要从外部传入数据,需要用tf.placeholder()
Important: This tensor will produce an error if evaluated. Its value must be fed using the feed_dict
optional argument to Session.run()
, Tensor.eval()
, or Operation.run()
.
需要注意的是:placeholder()和sess.run(***,feed_dict={input1 : ***,input2 : ***})绑定了,必须要用这种形式传输数据。
For example:
x = tf.placeholder(tf.float32, shape=(1024, 1024))
y = tf.matmul(x, x)
with tf.Session() as sess:
print(sess.run(y)) # ERROR: will fail because x was not fed.
rand_array = np.random.rand(1024, 1024)
print(sess.run(y, feed_dict={x: rand_array})) # Will succeed.
Args:
dtype
: The type of elements in the tensor to be fed.shape
: The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a tensor of any shape.name
: A name for the operation (optional).