Tensorflow学习笔记(一):训练基本的模型以及保存
前言
刚刚学习tensorflow,使用还不太熟练,这里引用几个模型的案例程序,以及保存的各种格式。
话不多说,直接上代码
一、mnist
# import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
print(tf.version.VERSION)
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
train_labels = train_labels[:1000]
test_labels = test_labels[:1000]
# plt.imshow(train_images[0])
# plt.show()
train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0
def create_model():
model = tf.keras.models.Sequential([
keras.layers.Dense(512, activation='relu', input_shape=(784,)),
keras.layers.Dropout(0.2),
keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
model = create_model()
model.summary()
model.fit(train_images,
train_labels,
epochs=5,
)
model.save('my_model.h5')
loss, acc = model.evaluate(test_images, test_labels)
print(" model, accuracy: {:5.2f}%".format(100 * acc))
二、CIFAR10
import tensorflow as tf
from tensorflow.keras import datasets,layers,optimizers,Sequential,metrics
from tensorflow import keras
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
def preprocess(x,y):
x=2*tf.cast(x,dtype=tf.float32)/255 - 1
y=tf.cast(y,dtype=tf.int32)
return x,y
batchsz=128
(x,y),(x_test,y_test)=datasets.cifar10.load_data()
y=tf.squeeze(y)
y_test=tf.squeeze(y_test)
y=tf.one_hot(y,depth=10)
y_test=tf.one_hot(y_test,depth=10)
print('datasets:',x.shape,y.shape,x.min(),x.max())
train_db=tf.data.Dataset.from_tensor_slices((x,y))
train_db=train_db.map(preprocess).shuffle(10000).batch(batchsz)
test_db=tf.data.Dataset.from_tensor_slices((x_test,y_test))
test_db=test_db.map(preprocess).batch(batchsz)
sample=next(iter(train_db))
print(sample[0].shape,sample[1].shape)
class MyDense(layers.Layer):
# to replave standaed layers.Dense
def __init__(self,inp_dim,outp_dim):
super(MyDense, self).__init__()
self.kernel=self.add_variable('w',[inp_dim,outp_dim])
# self.bias=self.add_variable('b',[outp_dim])
def call(self, inputs, training=None):
x=inputs@self.kernel
return x
class MyNetwork(keras.Model):
def __init__(self):
super(MyNetwork, self).__init__()
self.fc1=MyDense(32*32*3,256)
self.fc2=MyDense(256,128)
self.fc3=MyDense(128,64)
self.fc4=MyDense(64,32)
self.fc5=MyDense(32,10)
def call(self, inputs, training=None):
# pass
x = tf.reshape(inputs,[-1,32*32*3])
x = self.fc1(x)
x = tf.nn.relu(x)
x = self.fc2(x)
x = tf.nn.relu(x)
x = self.fc3(x)
x = tf.nn.relu(x)
x = self.fc4(x)
x = tf.nn.relu(x)
x = self.fc5(x)
return x
network=MyNetwork()
network.compile(optimizer=optimizers.Adam(lr=1e-3),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
network.fit(train_db,epochs=15,validation_data=test_db,validation_freq=1)
network.evaluate(test_db)
network.save('ckpt/weights.h5')
del network
print('xiaoan.ckpt')
network=MyNetwork()
network.compile(optimizer=optimizers.Adam(lr=1e-3),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
network.load_weights('xiaoan.ckpt')
print('loaded weights from file.')
network.evaluate(test_db)
三、fashon_mnist
代码如下:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def preprocess(x, y):
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x,y
(x, y), (x_test, y_test) = datasets.fashion_mnist.load_data()
print(x.shape, y.shape)
batchsz = 128
db = tf.data.Dataset.from_tensor_slices((x,y))
db = db.map(preprocess).shuffle(10000).batch(batchsz)
db_test = tf.data.Dataset.from_tensor_slices((x_test,y_test))
db_test = db_test.map(preprocess).batch(batchsz)
db_iter = iter(db)
sample = next(db_iter)
print('batch:', sample[0].shape, sample[1].shape)
model = Sequential([
layers.Dense(256, activation=tf.nn.relu), # [b, 784] => [b, 256]
layers.Dense(128, activation=tf.nn.relu), # [b, 256] => [b, 128]
layers.Dense(64, activation=tf.nn.relu), # [b, 128] => [b, 64]
layers.Dense(32, activation=tf.nn.relu), # [b, 64] => [b, 32]
layers.Dense(10) # [b, 32] => [b, 10], 330 = 32*10 + 10
])
model.build(input_shape=[None, 28*28])
model.summary()
# w = w - lr*grad
optimizer = optimizers.Adam(lr=1e-3)
def main():
for epoch in range(30):
for step, (x,y) in enumerate(db):
# x: [b, 28, 28] => [b, 784]
# y: [b]
x = tf.reshape(x, [-1, 28*28])
with tf.GradientTape() as tape:
# [b, 784] => [b, 10]
logits = model(x)
y_onehot = tf.one_hot(y, depth=10)
# [b]
loss_mse = tf.reduce_mean(tf.losses.MSE(y_onehot, logits))
loss_ce = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss_ce = tf.reduce_mean(loss_ce)
grads = tape.gradient(loss_ce, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 100 == 0:
print(epoch, step, 'loss:', float(loss_ce), float(loss_mse))
# test
total_correct = 0
total_num = 0
for x,y in db_test:
# x: [b, 28, 28] => [b, 784]
# y: [b]
x = tf.reshape(x, [-1, 28*28])
# [b, 10]
logits = model(x)
# logits => prob, [b, 10]
prob = tf.nn.softmax(logits, axis=1)
# [b, 10] => [b], int64
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
# pred:[b]
# y: [b]
# correct: [b], True: equal, False: not equal
correct = tf.equal(pred, y)
correct = tf.reduce_sum(tf.cast(correct, dtype=tf.int32))
total_correct += int(correct)
total_num += x.shape[0]
acc = total_correct / total_num
print(epoch, 'test acc:', acc)
if __name__ == '__main__':
main()