【NLP 困惑度解析和python实现】

**困惑度(Perplexity)**是自然语言处理和机器学习中常用的评价指标,尤其在评估语言模型时广泛使用。它衡量的是一个概率模型对一个样本(如一句话)的预测能力。


一、困惑度的定义

对于一个语言模型 $ P $ 和一个测试语料 $ W = w_1, w_2, \dots, w_N $,其困惑度定义为:

Perplexity=P(w1,w2,…,wN)−1N=exp⁡(−1N∑i=1Nlog⁡P(wi)) \text{Perplexity} = P(w_1, w_2, \dots, w_N)^{-\frac{1}{N}} = \exp\left( -\frac{1}{N} \sum_{i=1}^N \log P(w_i) \right) Perplexity=P(w1,w2,,wN)N1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

放飞自我的Coder

你的鼓励很棒棒哦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值