提交地址
RMQ问题
倍增的两个状态转移方程:
预处理方程
a[i][j] = min (a[i][j - 1], a[i + (1 << j - 1)][j - 1]);
查询方程=求[l,r]的最小值
取 k = l o g 2 ( r − l + 1 ) k = log_2(r - l + 1) k=log2(r−l+1)
min (a[l][k], a[r - (1 << k) + 1][k]);
下code的优化
为了保证查询时间是严格的
O
(
1
)
O(1)
O(1),可以预处理出所有需要的
l
o
g
2
log2
log2
空间换时间
code
#include<bits/stdc++.h>
using namespace std;
int read () {
int num = 0; char c = ' '; int flag = 1;
for (;c > '9' || c < '0'; c = getchar ())
if (c == '-')
flag = 0;
for (;c >= '0' && c <= '9'; num = (num << 3) + (num << 1) + c - 48, c = getchar ());
return flag ? num : - num;
}
const int maxn = 100200;
int n, m, a[maxn][18];
void init () {
n = read (); m = read ();
for (int i = 1;i <= n;i ++)
a[i][0] = read ();
}
int min (int a, int b) {
return a > b ? b : a;
}
void prework () {
for (int j = 1;(1 << j) <= n;j ++)
for (int i = 1;i + (1 << j) <= n;i ++)
a[i][j] = min (a[i][j - 1], a[i + (1 << j - 1)][j - 1]);
}
int q (int l, int r) {
int k = log2(r - l + 1);
return min (a[l][k], a[r - (1 << k) + 1][k]);
}
void work () {
for (int i = 1;i <= m;i ++) {
int l = read ();
int r = read ();
printf ("%d ", q (l, r));
}
}
int main () {
init ();
prework ();
work ();
return 0;
}