focus on the treatment assignment
- Observation: { X , D , Y ( 1 ) , Y ( 0 ) } \{X, D, Y(1), Y(0) \} { X,D,Y(1),Y(0)}
P ( X , D , Y ( 1 ) , Y ( 0 ) ) = P ( X ) P ( Y ( 1 ) , Y ( 0 ) ∣ X ) P ( D ∣ X , Y ( 1 ) , Y ( 0 ) ) P(X,D,Y(1),Y(0)) = P(X) P(Y(1),Y(0)|X)P(D|X,Y(1),Y(0)) P(X,D,Y(1),Y(0))=P(X)P(Y(1),Y(0)∣X)P(D∣X,Y(1),Y(0))
Definition:
Define the propensity score
e ( X , Y ( 1 ) , Y ( 0 ) ) = P ( D = 1 ∣ X , Y ( 1 ) , Y ( 0 ) ) e(X,Y(1),Y(0)) = P(D=1|X,Y(1),Y(0)) e(X,Y(1),Y(0))=P(D=1∣X,Y(1),Y(0))
Under strong ignorability
e ( X , Y ( 1 ) , Y ( 0 ) ) = P ( D = 1 ∣ X ) : = e ( X ) e(X,Y(1),Y(0)) = P(D=1|X) := e(X) e(X,Y(1),Y(0))=P(D=1∣X):=e(X)
where e ( X ) e(X) e(X) is the conditional probability of receiving the treatment given the observed covariates.
Useful theorem
Theorem: If D ⊥ { Y ( 1 ) , Y ( 0 ) } ∣ X D\bot\{Y(1), Y(0)\}|X D⊥{ Y(1),Y(0)}∣X, then D ⊥ { Y ( 1 ) , Y ( 0 ) } ∣ e ( X ) D\bot\{Y(1), Y(0)\}|e(X) D⊥{ Y(1),Y(0)}∣e(X).
Thus, e ( X ) e(X) e(X) can be used as a dimensional reduction tool.
【 X → e ( X ) X \rightarrow e(X) X→e(X)】
把问题从 X X X转换到 e ( X ) e(X) e(X)上的话, e ( X ) e(X) e(X)一定是一维的,这样如果把 e ( X ) e(X) e(X)离散化