import tensorflow as tf
import numpy as np
x_data =np.random.rand(100).astype(np.float32)
y_data=x_data*0.1 +0.3
Weights=tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases=tf.Variable(tf.zeros([1]))
y=Weights*x_data+biases
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess=tf.Session()
sess.run(init)
for step in range(201):
sess.run(train)
if step%20==0:
print(step,sess.run(Weigh
session 控制对话,定义了sess后 在用see.run 方法指向某处
import tensorflow as tf
import numpy as np
matrix1=tf.constant([[3,3]])
matrix2=tf.constant([[2],[2]])
product=tf.matmul(matrix1,matrix2)
sess=tf.Session()
result=sess.run(product)
print(result)
with tf.Session() as sess:
result2=sess.run(product)
print(result2)
Variable 变量
import tensorflow as tf
#定义变量
state = tf.Variable(0, name='counter')
#print(state.name) #打印state的名字
# 定义常量 one
one = tf.constant(1)
# 定义加法步骤 (注: 此步并没有直接计算)
new_value = tf.add(state, one)
# 将 State 更新成 new_value
update = tf.assign(state, new_value)
'''
如果你在 Tensorflow 中设定了变量,那么初始化变量是最重要的!!所以定义了变量以后, 一定要定义 init = tf.initialize_all_variables() .
到这里变量还是没有被激活,需要再在 sess 里, sess.run(init) , 激活 init 这一步.
'''
# 如果定义 Variable, 就一定要 initialize
# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer() # 替换成这样就好
# 使用 Session
with tf.Session() as sess:
sess.run(init)
for _ in range(3):
sess.run(update)
print(sess.run(state))