(2021.05.26补充)nn.Embedding.from_pretrained()的使用:
>>> # FloatTensor containing pretrained weights
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
>>> embedding = nn.Embedding.from_pretrained(weight)
>>> # Get embeddings for index 1
>>> input = torch.LongTensor([1])
>>> embedding(input)
tensor([[ 4.0000, 5.1000, 6.3000]])
首先来看official docs对nn.Embedding的定义:
是一个lookup table,存储了固定大小的dictionary(的word embeddings)。输入是indices,来获取指定indices的word embedding向量。