Datawhale_Task7 手写数字识别
用PyTorch完成手写数字识别
1.MNIST数据集转换为图像
import os
import struct
import numpy as np
import cv2
def create_txt(path_txt, str_data):
if not os.path.exists(path_txt):
with open(path_txt, 'w') as f:
print(f)
with open (path_txt, 'a') as f:
f.write(str_data)
def load_mnist(images_path,labels_path):
"""Load MNIST data from `path`"""
# labels_path = "./data/raw/train-labels-idx1-ubyte"
# images_path = "./data/raw/train-images-idx3-ubyte"
with open(labels_path, 'rb') as lbpath:
magic, n = struct.unpack('>II',
lbpath.read(8))
labels = np.fromfile(lbpath,
dtype=np.uint8)
with open(images_path, 'rb') as imgpath:
magic, num, rows, cols = struct.unpack('>IIII',
imgpath.read(16))
images = np.fromfile(imgpath,
dtype=np.uint8).reshape(len(labels), 784)
return images, labels
def save_mnist(images_path, labels_path, kind):
imgs, labels = load_mnist(images_path, labels_path)
root = './data'
for i in range(imgs.shape[0]):
imgname = '%05d'%i +'.png'
imgpath = os.path.join(root, kind)
if not os.path.exists(imgpath):
os.mkdir(imgpath)
img = imgs[i].reshape(28,28)
cv2.imwrite(os.path.join(imgpath,imgname), img)
path_txt = os.path.join(root, kind+'.txt')
create_txt(path_txt, os.path.join(imgpath,imgname)+' '+str(labels[i])+'\n')
if __name__=="__main__":
images_path = "./data/raw/train-images-idx3-ubyte"
labels_path = "./data/raw/train-labels-idx1-ubyte"
save_mnist(images_path, labels_path,'train')
images_path = "./data/raw/t10k-images-idx3-ubyte"
labels_path = "./data/raw/t10k-labels-idx1-ubyte"
save_mnist(images_path, labels_path, 'test')
2.LeNet5实现手写数字识别
import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
batch_size = 128
learning_rate = 0.01
num_epoch = 10
# 实例化MNIST数据集对象
train_data = datasets.MNIST('./data', train=True, transform=transforms.ToTensor(), download=True)
test_data = datasets.MNIST('./data', train=False, transform=transforms.ToTensor(), download=True)
# train_loader:以batch_size大小的样本组为单位的可迭代对象
train_loader = DataLoader(train_data, batch_size, shuffle=True)
test_loader = DataLoader(test_data)
class CNN(nn.Module):
def __init__(self, in_dim, out_dim):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_dim, 6, 3, stride=1, padding=1)
self.batch_norm1 = nn.BatchNorm2d(6)
self.relu = nn.ReLU(True)
self.conv2 = nn.Conv2d(6, 16, 5, stride=1, padding=0)
self.pool = nn.MaxPool2d(2, 2)
self.batch_norm2 = nn.BatchNorm2d(16)
self.fc1 = nn.Linear(400, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, out_dim)
def forward(self, x):
x = self.batch_norm1(self.conv1(x))
x = F.relu(x)
x = self.pool(x)
x = self.batch_norm2(self.conv2(x))
x = self.relu(x)
x = self.pool(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
isGPU = torch.cuda.is_available()
print(isGPU)
model = CNN(1, 10)
if isGPU:
model = model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epoch):
running_acc = 0.0
running_loss = 0.0
for i, data in enumerate(train_loader, 1): # train_loader:以batch_size大小的样本组为单位的可迭代对象
img, label = data
img = Variable(img)
label = Variable(label)
if isGPU:
img = img.cuda()
label = label.cuda()
# forward
out = model(img)
loss = criterion(out, label)
# print(label)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, pred = torch.max(out, dim=1) # 按维度dim 返回最大值
running_loss += loss.item() * label.size(0)
current_num = (pred == label).sum() # variable
acc = (pred == label).float().mean() # variable
running_acc += current_num.item()
if i % 100 == 0:
print("epoch: {}/{}, loss: {:.6f}, running_acc: {:.6f}"
.format(epoch + 1, num_epoch, loss.item(), acc.item()))
print("epoch: {}, loss: {:.6f}, accuracy: {:.6f}".format(epoch + 1, running_loss, running_acc / len(train_data)))
model.eval()
current_num = 0
for i, data in enumerate(test_loader, 1):
img, label = data
if isGPU:
img = img.cuda()
label = label.cuda()
with torch.no_grad():
img = Variable(img)
label = Variable(label)
out = model(img)
_, pred = torch.max(out, 1)
current_num += (pred == label).sum().item()
print("Test result: accuracy: {:.6f}".format(float(current_num / len(test_data))))
torch.save(model.state_dict(), './cnn.pth') # 保存模型
3.手写数字识别(参考:Datawhale)
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
#device
device=torch.device('cuda' if torch.cuda.is_available else 'cpu')
#params
num_epochs=5
num_classes=10
batch_size=64
learning_rate=0.001
#dataset
train_dataset=torchvision.datasets.MNIST(root='./data',
train=True,
download=False,
transform=transforms.ToTensor())
test_dataset=torchvision.datasets.MNIST(root='./data',
train=False,
download=False,
transform=transforms.ToTensor())
#dataloader
train_loader=torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader=torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
#cnn
class ConvNet(nn.Module):
def __init__(self,num_classes=10):
super(ConvNet,self).__init__()
self.layer1=nn.Sequential(
nn.Conv2d(1,16,kernel_size=5,stride=1,padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2,stride=2)
)
self.layer2=nn.Sequential(
nn.Conv2d(16,32,kernel_size=5,stride=1,padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2,stride=2)
)
self.fc=nn.Linear(7*7*32,num_classes)
def forward(self,x):
out=self.layer1(x)
out=self.layer2(out)
out=out.reshape(out.size(0),-1)
out=self.fc(out)
return out
#model
model=ConvNet(num_classes).to(device)
#loss
criterion=nn.CrossEntropyLoss()
#optimizer
optimizer=torch.optim.Adam(model.parameters(),lr=learning_rate)
total_step = len(train_loader)
#iterations
for epoch in range(num_epochs):
for i,(images,labels) in enumerate(train_loader):
images=images.to(device)
labels=labels.to(device)
#forward
output=model(images)
loss=criterion(output,labels)
#backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1)%100==0:
print('Epoch:[{}/{}],Step:[{}/{}],Loss:{:.4f}'.format(epoch+1,num_epochs,i+1,total_step,loss.item()))
#eval
model.eval()
with torch.no_grad():
correct=0
total=0
for images,labels in test_loader:
images=images.to(device)
labels=labels.to(device)
outputs=model(images)
_,predicted=torch.max(outputs.data,1)
total+=labels.size(0)
correct+=(predicted==labels).sum().item()
print('Test Accuracy of the model on 10000 test images is :{} %'.format(100*correct/total))