目录
Day01
线性回归,softmax回归与分类模型,多层感知机
参考:https://tangshusen.me/Dive-into-DL-PyTorch/#/
《动手学深度学习》组队学习 学员学习手册 https://shimo.im/docs/pdr3wkyHKrxJYdyT/read
1.线性回归
方法1---手动实现
import torch
#import IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
num_inputs = 2
num_examples = 1000
true_w = [2, -3,4]
true_b = 4.2
features = torch.randn(num_examples,num_inputs,
dtype=torch.float32) #标准正态分布
labels = true_w[0]*features[:,0]+true_w[1]*features[:,1]+true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),
dtype=torch.float32)
# plt.figure()
# #画散点图
# plt.scatter(features[:,1].numpy(),labels.numpy(),1)
# plt.show()
#读取数据
def data_iter(batch_size,features,labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i:min(i+batch_size, num_examples)])
yield features.index_select(0, j), labels.index_select(0, j)
batch_size = 10
for X,y in data_iter(batch_size, features, labels):
print(X,'\n', y)
break
# 初始化模型参数
w = torch.tensor(np.random.normal(0,0.01,(num_inputs,1)),dtype=torch.float32)
b = torch.zeros(1,dtype=torch.float32)
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
#定义模型
de