转载自点击打开链接
题目描述
输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。
解法一:排序
相信很多人会首先想到这种方法,先把数组按升序/降序进行排序,然后输出 K 个最小/最大的数。
- 常规的排序方法时间复杂度至少是Θ(nlog2n)Θ(nlog2n)。(快排或堆排序)
- 可能你会说,我们可以使用线性时间的排序算法。当然可以,但通常它们对输入的数组有一定的要求。比如计数排序要求 n 个数都是正整数,且它们的取值范围不太大。
解法二:部分排序 O(n∗k)O(n∗k)
由于我们只需要找出最小/最大的 k 个数,所以我们可以进行部分排序,比如简单选择排序 和 冒泡排序,它们每一趟都能把一个最小/最大元素放在最终位置上,所以进行 k 趟就能把 n 个数中的前 k 个排序出来。
部分简单选择排序:void select_sort(int A[], int n, int k)
{
for(int i=0; i<k; ++i) { // k趟
int Min = i; // 记录最小元素的位置
for(int j=i+1; j<n; ++j)
if(A[j] < A[Min])
Min = j;
if(Min != i) // 与A[i]交换
{
int tmp = A[Min];
A[Min] = A[i];
A[i] = tmp;
}
}
}
部分冒泡排序:
void bubble_sort(int A[], int n, int k)
{
for(int i=0; i<k; ++i) // k趟
{
bool flag = false;
for(int j=n-1; j>i; --j) // 一趟冒泡过程
if(A[j-1] > A[j])
{
int tmp = A[j-1];
A[j-1] = A[j];
A[j] = tmp;
flag = true;
}
if(flag == false) // 已经有序
return ;
}
}
解法三:快排划分 O(n∗log2k)O(n∗log2k)
当我们求出第 k 顺序统计量时,位于它前面的元素都比它小,位于它后面的元素都比它大。这时,数组的前 k 个数就是最小的 k 个数。
int partition(int A[], int low, int high)
{
int pivot = A[low];
while(low < high)
{
while(low < high && A[high]>=pivot)
--high;
A[low] = A[high];
while(low < high && A[low]<=pivot)
++low;
A[high] = A[low];
}
A[low] = pivot;
return low;
}
int topK(int A[], int low, int high, int k)
{
if(k <= 0)
return -1;
if(low == high)
return low;
int pos = partition(A, low, high);
int i = pos - low + 1;
if(i == k)
return pos; // 返回前k个数的
else if(i > k)
return topK(A, low, pos, k);
else
return topK(A, pos+1, high, k-i);
}