
机器学习基础
机器学习基础
фора 快跑
这个作者很懒,什么都没留下…
展开
-
mnist手写数字识别使用python
import numpy as npimport matplotlib.pyplot as pltfrom scipy.special import expit as f_actdef init_net(): input_nodes = 784 print('Input the number of hidden neurons:') hidden_nodes = 500#int(input()) out_nodes = 10 print('Input the.原创 2022-02-23 23:17:59 · 1508 阅读 · 0 评论 -
PCA 主成分分析的实例程序
import numpy as npfrom sklearn.decomposition import PCAfrom sklearn import datasetsimport matplotlibimport matplotlib.pyplot as plt#加载数据data = np.loadtxt(open("./data/task1.csv","r"),delimiter=",",skiprows=0)#设置主成分参数:pc个数,数值求解器的类型pca = PCA(n_c.原创 2022-02-25 19:26:13 · 723 阅读 · 0 评论 -
SVM简单应用python代码 dogs vs cats
from sklearn.preprocessing import LabelEncoderfrom sklearn.svm import LinearSVCfrom sklearn.metrics import classification_report, confusion_matrixfrom sklearn.model_selection import train_test_splitfrom IPython.display import Imagefrom imutils import.原创 2022-02-27 06:31:49 · 687 阅读 · 0 评论 -
使用Python应用和可视化二叉决策树的简单小程序
#%%import pandas as pdimport matplotlibimport numpy as npimport matplotlib.pyplot as pltdf = pd.read_csv('./data/d.csv')task_data = df.head(640)#1print(len(task_data[task_data['Outcome'] == 0]))train = task_data.head(int(len(task_data)*0.8))te.原创 2022-03-01 02:45:40 · 436 阅读 · 0 评论 -
python 强化学习Q-Learning 算法简单应用
1:Let 𝑆 be a set of states, and 𝐴(𝑠), 𝑠 ∈ 𝑆, be a set of actions available in the state 𝑠.2:Initialize𝑞(𝑠,𝑎),𝑠∈𝑆,𝑠isnotterminal,𝑎∈𝐴(𝑠)arbitrarily3:Initialize 𝛼 and 𝛾4:for each game do5:Initialize a nonterminal state 𝑠0 at原创 2022-03-07 05:04:32 · 1413 阅读 · 0 评论 -
集成学习python代码简单示例
from imutils import pathsimport numpy as npimport cv2import osdef extract_histogram(image, bins=(8, 8, 8)): hist = cv2.calcHist([image], [0, 1, 2], None, bins, [0, 256, 0, 256, 0, 256]) cv2.normalize(hist, hist) return hist.flatten()#加载.原创 2022-03-11 00:17:45 · 1007 阅读 · 0 评论