PAT 甲级 1155 Heap Paths (30 分)

本文介绍了一种方法来判断给定的完全二叉树是否满足最大堆或最小堆的性质,并提供了详细的实现步骤及代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))

One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.

Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

Output Specification:

For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.

Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.

Sample Input 1:

8
98 72 86 60 65 12 23 50

Sample Output 1:

98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap

Sample Input 2:

8
8 38 25 58 52 82 70 60

Sample Output 2:

8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap

Sample Input 3:

8
10 28 15 12 34 9 8 56

Sample Output 3:

10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap

解题思路:看上去完全不会,因为我二叉树,堆排序的知识是一片空白,甚至DFS也只是知道名字,所以只能看着别人的代码来反向研究,记录下我今天思考的成果吧。希望以后可以有所进步,掌握这两个知识。代码来源:https://blog.youkuaiyun.com/liuchuo/article/details/84973009

这道题目其实完全不需要堆排序的相关知识,甚至你只需要知道名字。难点其实在于,对于二叉树的各个节点的打印。给出的数据是按照二叉树的层序来的,由于给出的是完全二叉树,所以也不需要再去建树等一些复杂的想法。直接通过下标去访问左右孩子即可。如何去打印节点?这个问题需要用DFS的思想去解决。将所有节点值存在数组中,由于是利用下标,所以要从1开始(0怎么乘都是0)函数的调用便是dfs(1).解决完调用后,下一个问题便是对dfs函数内部完善,dfs函数代码如下:

void dfs(int index)
{
    if((index*2>n) &&(index*2+1>n))
    {
        if(index<=n)
        {
            for(int i=0; i<v.size(); i++)
            {
                cout<<v[i];
                if(i!=v.size()-1)
                {
                    cout<<" ";
                }
                else if(i==v.size()-1)
                {
                    cout<<endl;
                }
            }
        }
    }
    else
    {
        v.push_back(a[index*2+1]);
        dfs(index*2+1);
        v.pop_back();
        v.push_back(a[index*2]);
        dfs(index*2);
        v.pop_back();
    }
}

 建立一个vector<int> v,对其进行维护。当下标已经到达了叶子节点,即index*2>n && index*2+1>n ,对于路径进行输出,只不过假定这时候还不知道代码如何。下标未达到叶子节点时,先进行右子树后进行左子树的dfs,先将右子树节点插入v中,在dfs完成后退出,再左子树完整走一遍。这样便可以完善输出的代码了,对于输出,在插入了右子树节点后,遍历v将v中元素全部输出即可。注意控制格式,以及v中的元素下标由1开始。

第二步是判断是最大堆或者最小堆,对此,在二叉树的数组a中,通过控制下标进行判断。这里一开始将下标由1开始逐步增大,<=n/2,但这样比较复杂,还要讨论是否存在最后一个右子树。由2-n直接通过整除2便可以访问二叉树的父节点。

完整代码如下:

#include <bits/stdc++.h>

using namespace std;

vector <int> v;

int n;
int a[1010]= {0};

int is_max=1,is_min=1;

void dfs(int index)
{
    if((index*2>n) &&(index*2+1>n))
    {
        if(index<=n)
        {
            for(int i=0; i<v.size(); i++)
            {
                cout<<v[i];
                if(i!=v.size()-1)
                {
                    cout<<" ";
                }
                else if(i==v.size()-1)
                {
                    cout<<endl;
                }
            }
        }
    }
    else
    {
        v.push_back(a[index*2+1]);
        dfs(index*2+1);
        v.pop_back();
        v.push_back(a[index*2]);
        dfs(index*2);
        v.pop_back();
    }
}

int main()
{
    cin>>n;
    int i;
    for(i=1; i<=n; i++)
    {
        cin>>a[i];
    }
    v.push_back(a[1]);
    dfs(1);
    for(i=2;i<=n;i++)
    {
        if(a[i/2]>a[i])
        {
            is_min=0;
        }
        else if(a[i/2]<a[i])
        {
            is_max=0;
        }
    }
    if(is_min==1)
    {
        cout<<"Min Heap"<<endl;
    }
    else if(is_min==0)
    {
        if(is_max==1)
        {
            cout<<"Max Heap"<<endl;
        }
        else
        {
            cout<<"Not Heap"<<endl;
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值