Kiki & Little Kiki 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2742 Accepted Submission(s): 1447
Problem Description
There are n lights in a circle numbered from 1 to n. The left of light 1 is light n, and the left of light k (1< k<= n) is the light k-1.At time of 0, some of them turn on, and others turn off.
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
Input
The input contains one or more data sets. The first line of each data set is an integer m indicate the time, the second line will be a string T, only contains '0' and '1' , and its length n will not exceed 100. It means all lights in the circle from 1 to n.
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
Output
For each data set, output all lights' state at m seconds in one line. It only contains character '0' and '1.
Sample Input
1 0101111 10 100000001
Sample Output
1111000 001000010
Source
Recommend
lcy
题意:操作n次,每次操作将为1的灯的右边灯反转,求最后灯的状态
每次的结果取决于左边,可以简单列举几个,1 1 第二个灯的状态会变成0, 1 0 第二个灯的状态会变成1,0 0 地二个灯的状态还是0 ,从矩阵上考虑可以构造一个n*n的矩阵,对角线和对角线前一位为1,其余均为0,运算上如果每次%2效率会很低,只有0 1 两种情况就可以特殊处理了,可以把+和*的运算换位^和&的运算,因为矩阵每次都能从上一行经过变化得到,所以通过这一点能将复杂度从n^3降到n^
需要构造的矩阵为:
1 0 0 0 0 0 ...... 1 a[0]
1 1 0 0 0 0 ...... 0 a[1]
0 1 1 0 0 0 ...... 0 a[2]
0 0 0 1 1 0 ...... 0 X a[3]
................... ....
0 0 0 0 0 0 ..... 1 0 a[n-1]
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
#define pi acos(-1.0)
#define eps 1e-10
#define pf printf
#define sf scanf
#define lson rt<<1,l,m
#define rson rt<<1|1,m+1,r
#define e tree[rt]
#define _s second
#define _f first
#define all(x) (x).begin,(x).end
#define mem(i,a) memset(i,a,sizeof i)
#define for0(i,a) for(int (i)=0;(i)<(a);(i)++)
#define for1(i,a) for(int (i)=1;(i)<=(a);(i)++)
#define mi ((l+r)>>1)
#define sqr(x) ((x)*(x))
const int inf=0x3f3f3f3f;
char g[110];
int n,a[110],ans[110][110],p[110][110],len;
void multi(int a[][110],int b[][110])
{
int tmp[110][110];
mem(tmp,0);
for0(i,len)
for0(j,len)
tmp[0][i]^=a[0][j]&b[j][i];
for(int i=1;i<len;i++)
for0(j,len)
a[i][j]=tmp[i][j]=tmp[i-1][(j+len-1)%len];//每一行的第n个可根据前一个递推得到
for0(i,len)a[0][i]=tmp[0][i];
}
void init()//矩阵初始化
{
mem(ans,0);
for0(i,len)ans[i][i]=1;
mem(p,0);
for0(i,len)p[i][i]=p[i][(i+len-1)%len]=1;
}
void solve()//快速幂
{
while(n)
{
if(n&1)multi(ans,p);
n>>=1;
multi(p,p);
}
}
int main()
{
while(~sf("%d",&n))
{
sf("%s",g);
len=strlen(g);
for0(i,len)a[i]=g[i]-'0';
init();
solve();
for0(i,len)
{
int o=0;
for0(j,len)
o^=ans[i][j]&a[j];//计算每一个的情况
pf(i==len-1?"%d\n":"%d",o);
}
}
return 0;
}