(决策树)泰坦尼克号生还者简单预测

import pandas as pd
titanic=pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')

X=titanic[['pclass','age','sex']]
y=titanic['survived']


X['age'].fillna(X['age'].mean(),inplace=True)

from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=33)

from sklearn.feature_extraction import DictVectorizer
vec=DictVectorizer(sparse=False)

X_train=vec.fit_transform(X_train.to_dict(orient='record'))
#print vec.feature_names_

X_test=vec.transform(X_test.to_dict(orient='record'))

from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()

dtc.fit(X_train,y_train)

y_predict=dtc.predict(X_test)

from sklearn.metrics import classification_report

print dtc.score(X_test,y_test)
print classification_report(y_predict,y_test,target_names=['died','survived'])


#可视化决策树,还差一步
from sklearn.tree import export_graphviz
with open("tree.dot", 'w') as f:
  f = export_graphviz(dtc.fit(X_train,y_train), out_file = f)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值