决策树用于标称型数据的分类,首先要构造决策树,使用信息增益选择最好的数据集划分方式。
from math import log
# 计算给定数据集的香农熵
def calcShannonEnt(dataSet):
# 实例总数
numEntries = len(dataSet)
# 对于数据集中的每一个数据,获得最后一列的键值,如果该键值在数据字典中不存在,扩展数据字典。
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
# 计算每个类别的概率,并计算香农熵
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob,2)
return shannonEnt
# 数据集的划分,以axis所在的索引位置划分数据集
def splitDataSet(dataSet, axis, value):
retDataSet = []
# 数据集中的每一个数据,如果划分数据的特征与需要返回的特征值相等,则将除axis索引位置所在列的其他列的数据返回
for featVec in dataSet:
if featVec[axis] == value:
# 相当于一个空列表
reduceFeatVec = featVec[:axis]
#print(reduceFeatVec)
#reduceFeatVec = []
# python在函数内部对列表对象的修改,会影响列表对象的整个生命周期
reduceFeatVec.extend(featVec[axis + 1:])
retDataSet.append(reduceFeatVec)
#print(retDataSet)
return retDataSet
"""
dataSet = [[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
splitDataSet(dataSet,0,1)
"""
# 选择最好的数据集划分方式,数据必须是由列表元素组成的列表,所有的列表元素要有相同的长度,每个实例的最后一个元素是该实例的类别标签
def chooseBestFeatureToSplit(dataSet):
# 判定当前数据集包含多少特征属性,一定有一个属性是类别,而且为了之后的for循环遍历方便
numFeatures = len(dataSet[0]) - 1
# 原始香农熵,保存最初的无序度量值
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
# featList = []
for i in range(numFeatures):
"""
for example in dataSet:
featList.append(example[i])
"""
# 获得不相同的特征值
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
# 对于该特征的每一个唯一属性值划分数据集,并计算新的香农熵值,并对所有唯一属性的熵值求和
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
# 计算信息增益,即计算数据无序度的减少
infoGain = baseEntropy - newEntropy
# 比较所有特征中的信息增益,返回最好特征划分的索引值
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
"""
dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
bestFeature = chooseBestFeatureToSplit(dataSet)
print(bestFeature)
"""
"""
for i in range(9):
print(i)
print(len(range(9)))
"""
使用递归来创建决策树,如果类标签不能唯一决定数据集的划分时,采用多数表决来决定叶子节点的分类
# majorityCnt()函数用
import operator
# 如果数据集处理了所有属性,但类标签依然不唯一,用多数表决的方法决定叶子节点的分类
def majorityCnt(classList):
# 存储每个类标签出现的频率
classCount = {}
# 如果标签不存在字典中,则创建,存在,加一
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
# 排序,返回最大值的标签
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
# 创建树
def creatTree(dataSet, labels):
# 数据集的所有类标签
classList = [example[-1] for example in dataSet]
# 所有的类标签完全相同,直接返回类标签
if(classList.count(classList[0]) == len(classList)):
return classList[0]
# 使用完了所有特征,仍不能将数据集划分为仅包含唯一类别的分组
if(len(dataSet) == 1):
return majorityCnt(classList)
# 选择出最好特征的索引和标签
bestFeat = chooseBestFeatureToSplit(dataSet)
# print(bestFeat)
bestFeatLabel = labels[bestFeat]
# print(bestFeatLabel)
# myTree用于存储树的所有信息
myTree = {bestFeatLabel: {}}
# 最好特征的标签要删除
del labels[bestFeat]
# 得到列表包含的所有属性值
featValues = [example[bestFeat] for example in dataSet]
# print(featValues)
uniqueVals = set(featValues)
# 遍历当前特征包含的所有属性,在每个数据集上递归调用函数,并将得到的值填入myTree中
for value in uniqueVals:
# 复制类标签,并开辟空间,存储在新的列表变量中
subLabels = labels[:]
myTree[bestFeatLabel][value] = creatTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
"""
dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
labels = ['no surfacing', 'flippers']
myTree = creatTree(dataSet,labels)
print(myTree)
"""
结果:
使用Matplotlib绘制树形图
# 树节点的绘制
import matplotlib.pyplot as plt
# 定义文本框(叶子节点和判定节点)和箭头格式
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
# 绘图功能的执行,该功能的执行需要需要有一个全局变量createPlot.ax1()定义的绘图区
def plotNode(nodeTxt,centerPt,parentPt,nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',xytext=centerPt, textcoords='axes fraction', va='center',ha='center',bbox=nodeType,arrowprops=arrow_args)
# 新图形的创建,清空绘图区,绘制俩个代表不同类型的树节点
def createPlot():
# fig = plt.figure(1,facecolor='white')
# fig.clf()
# 绘制一个长宽比是1:1的图形,并设置图形不可见
createPlot.ax1 = plt.subplot(111,frameon=False)
# 绘制俩个节点
plotNode('决策节点', (0.5, 0.1), (0.1, 0.5), decisionNode)
plotNode('叶节点', (0.8, 0.1), (0.3, 0.8), leafNode)
plt.show()
# createPlot()
# 获取叶节点的数目
def getNumLeafs(myTree):
numLeafs = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
numLeafs += getNumLeafs(secondDict[key])
else:
numLeafs += 1
return numLeafs
# 计算树的层数
def getTreeDepth(myTree):
maxDepth = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
thisDepth = 1 + getTreeDepth(secondDict[key])
else:
thisDepth = 1
if thisDepth > maxDepth:
maxDepth = thisDepth
return maxDepth
# 定义俩颗预先储存好的树信息,方便测试使用
def retrieveTree(i):
listOfTree = [{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flipper': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}]
return listOfTree[i]
# myTree = retrieveTree(0)
# print(getNumLeafs(myTree))
# print(getTreeDepth(myTree))
# 在父子节点间填充文本信息,xMid 和 yMid 分别表示横纵坐标的位置,txtString表示要填充的文本信息
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0] - cntrPt[0])/2.0 + cntrPt[0]
yMid = (parentPt[1] - cntrPt[1])/2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString)
# 按照图形比例绘制树形图
def plotTree(myTree, parentPt, nodeTxt):
numLeafs = getNumLeafs(myTree)
depth = getTreeDepth(myTree)
firstStr = list(myTree.keys())[0]
# 计算决策节点的坐标,注意横坐标的变换,初始横坐标设置为 -(1/2w),父节点的横坐标为 -(1/2w) + (1 + w)/2w
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)
plotMidText(cntrPt, parentPt, nodeTxt)
# 绘制决策节点
plotNode(firstStr, cntrPt, parentPt, decisionNode)
# 获取当前节点的子节点
secondDict = myTree[firstStr]
# 深度的变化,即坐标标变化,移到绘制子节点的位置
plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
# 遍历子节点,判断是决策节点还是叶子节点
for key in secondDict.keys():
# 如果是决策节点,递归调用函数
if type(secondDict[key]).__name__ == 'dict':
plotTree(secondDict[key], cntrPt, str(key))
# 如果是叶子节点,计算叶子节点横坐标的位置,在 -(1/2w)的基础上每次偏移 1/w
else:
plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
# 由于每次在循环之前就到达绘制子节点的位置,在循环里面递归时又将深度减了一次,所以要加
plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD
def createPlot(inTree):
fig = plt.figure(1, facecolor='white')
# 图形区清空,绘制图形
fig.clf()
# 去掉横纵坐标上的值
axprops = dict(xticks=[],yticks=[])
# print(axprops)
createPlot.ax1 = plt.subplot(111,frameon=False, **axprops)
# 树的宽度
plotTree.totalW = float(getNumLeafs(inTree))
# 树的宽度
plotTree.totalD = float(getTreeDepth(inTree))
# 为方便计算横坐标的变化而赋的初值
plotTree.xOff = -0.5/plotTree.totalW
# 父节点的起始纵坐标
plotTree.yOff = 1.0
# 绘制图形
plotTree(inTree, (0.5, 1.0), '')
plt.show()
# 测试函数输出结果
# myTree = retrieveTree(0)
# createPlot(myTree)
"""
# 变更字典,重新绘制图
myTree = retrieveTree(0)
myTree['no surfacing'][3] = 'maybe'
print(myTree)
createPlot(myTree)
# 变更字典,重新绘制图
myTree['no surfacing'][1]['flippers'][2] = 'head'
createPlot(myTree)
"""
结果:
决策树的使用
# 使用决策树分类
def classify(inputTree,featLabels,testVec):
firstStr = list(inputTree.keys())[0]
secondDict = inputTree[firstStr]
# 特征标签列表的index方法查找当前列表中第一个匹配firstStr变量的元素
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
# 如果测试集(testVec)的值与树节点的值相同,继续比较
if testVec[featIndex] == key:
# 判断是决策节点还是叶子节点,决策节点递归,叶子节点返回结果
if(type(secondDict[key]).__name__ == 'dict'):
classLabel = classify(secondDict[key], featLabels, testVec )
else:
classLabel = secondDict[key]
return classLabel
"""
labels = ['no surfacing', 'flippers']
myTree = {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
print(classify(myTree, labels, [1, 0]))
print(classify(myTree, labels, [0]))
"""
持久化分类器,将决策树使用pickle模块存储
# 使用pickle模块存储决策树
def storeTree(inputTree, filename):
import pickle
fw = open(filename, 'wb')
pickle.dump(inputTree, fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename, 'rb')
return pickle.load(fr)
"""
myTree = {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
storeTree(myTree, 'classifierStorage.txt')
grabTree('classifierStorage.txt')
"""
实例:使用决策树预测隐形眼镜类型
from chapter3 import trees
from chapter3 import treePlotter
fr = open('E:\机器学习\machinelearninginaction\Ch03\lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
lensesTree = trees.creatTree(lenses, lensesLabels)
print(lensesTree)
treePlotter.createPlot(lensesTree)
结果: