从零开始数据科学与机器学习算法-集成算法-10

本文介绍了如何使用Bagging方法和随机森林提高预测准确性。通过在Python中实现Bagging过程及决策树算法,展示了如何通过集成多个弱分类器来创建一个强大的分类模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

把各种model综合起来——让预测更准确、更加稳定(做平均)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在随机森林里面的超参数(hyper-parameter):

1.对于每一棵树,要选取特性(features),假设总共有n个feature,你需要确定选取个m作为参数
2.每一个node的最低size(每个棵树的每一片叶子的最小值)
3.每一个树的深度(maximum depth of one tree) 4.选择森林里面有多少棵树

一、bagging

from random import seed
from random import randrange
from random import random


def subsample(dataset, ratio=1.0):
    sample = list()
    n_sample = round(len(dataset) * ratio)
    while len(sample) < n_sample:
        index = randrange(len(dataset))
        sample.append(dataset[index])
    return sample


def mean(numbers):
    result = sum(numbers) / float(len(numbers))
    return result


seed(1)
dataset = [[randrange(10)] for i in range(20)]

# print(dataset)

ratio = 0.10
for size in [1, 10, 100,1000,10000,100000,1000000]:
    sample_means = list()
    for i in range(size):
        sample = subsample(dataset, ratio)
        sample_mean = mean([row[0] for row in sample])
        sample_means.append(sample_mean)
    print("When sample is [%d],the estimated mean is [%.3f]" % (size, mean(sample_means)))

print("The real mean of our dataset is [%.3f]" % mean([row[0] for row in dataset]))

在这里插入图片描述

代码

在这里插入图片描述

from random import seed
from random import randrange
from random import random
from csv import reader


# 1.load our data
def load_csv(filename):
    dataset = list()
    with open(filename, 'r') as file:
        csv_reader = reader(file)
        for row in csv_reader:
            if not row:
                continue
            dataset.append(row)
    return dataset


dataset = load_csv('sonar.all-data.csv')


# print(dataset)

# 2.datatype conversion

def str_to_float(dataset, column):
    for row in dataset:
        row[column] = float(row[column].strip())


def str_to_int(dataset, column):
    class_value = [row[column] for row in dataset]
    unique = set(class_value)
    look_up = dict()
    for i, value in enumerate(unique):
        look_up[value] = i
    for row in dataset:
        row[column] = look_up[row[column]]
    return look_up


# 3.k_fold cross validation

def cross_validation_split(dataset, n_folds):
    dataset_split = list()
    dataset_copy = list(dataset)
    fold_size = int(len(dataset) / n_folds)
    for i in range(n_folds):
        fold = list()
        while len(fold) < fold_size:
            index = randrange(len(dataset_copy))
            fold.append(dataset_copy.pop(index))
        dataset_split.append(fold)
    return dataset_split


# 4.calculate model accuracy

def calculate_accuracy(actual, predicted):
    correct = 0
    for i in range(len(actual)):
        if actual[i] == predicted[i]:
            correct += 1
    return correct / float(len(actual)) * 100.0


# 5.how good is our algo
def evaluate_our_algo(dataset, algo, n_folds, *args):
    folds = cross_validation_split(dataset, n_folds)
    scores = list()
    for fold in folds:
        train_set = list(folds)
        train_set.remove(fold)
        train_set = sum(train_set, [])
        test_set = list()
        for row in fold:
            row_copy = list(row)
            test_set.append(row_copy)
            row_copy[-1] = None
        predicted = algo(train_set, test_set, *args)
        actual = [row[-1] for row in fold]
        accuracy = calculate_accuracy(actual, predicted)
        scores.append(accuracy)
    return scores


# 6.left and right split

def test_split(index, value, dataset):
    left, right = list(), list()
    for row in dataset:
        if row[index] < value:
            left.append(row)
        else:
            right.append(row)
    return left, right


# 7.calculate gini index

def gini_index(groups, classes):
    n_instances = float(sum([len(group) for group in groups]))
    gini = 0.0
    for group in groups:
        size = float(len(group))
        if size == 0:
            continue
        score = 0.0

        for class_val in classes:
            p = [row[-1] for row in group].count(class_val) / size
            score += p * p
        gini += (1 - score) * (size / n_instances)
    return gini


# 8.calculate the best split

def get_split(dataset):
    class_values = list(set(row[-1] for row in dataset))
    posi_index, posi_value, posi_score, posi_groups = 888, 888, 888, None
    for index in range(len(dataset[0])- 1):
        for row in dataset:
            groups = test_split(index, row[index], dataset)
            gini = gini_index(groups, class_values)
            if gini < posi_score:
                posi_index, posi_value, posi_score, posi_groups = index, row[index], gini, groups
    return {'index': posi_index, 'value': posi_value, 'groups': posi_groups}


# 9. to terminal

def determine_the_terminal(group):
    outcomes = [row[-1] for row in group]
    return max(set(outcomes), key=outcomes.count)


# 10.
# 1.split our data into left and right
# 2.delete the original data
# 3.check if the data is none/max depth/min size
# 4.to terminal

def split(node, max_depth, min_size, depth):
    left, right = node['groups']
    del (node['groups'])
    if not left or not right:
        node['left'] = node['right'] = determine_the_terminal(left + right)
        return
    if depth >= max_depth:
        node['left'], node['right'] = determine_the_terminal(left), determine_the_terminal(right)

    if len(left) <= min_size:
        node['left'] = determine_the_terminal(left)
    else:
        node['left'] = get_split(left)
        split(node['left'], max_depth, min_size, depth + 1)
    if len(right) <= min_size:
        node['right'] = determine_the_terminal(right)
    else:
        node['right'] = get_split(right)
        split(node['right'], max_depth, min_size, depth + 1)


# 11.make our decision tree

def build_tree(train, max_depth, min_zise):
    root = get_split(train)
    split(root, max_depth, min_zise, 1)
    return root


# 12.make prediction

def predict(node, row):
    if row[node['index']] < node['value']:
        if isinstance(node['left'], dict):
            return predict(node['left'], row)
        else:
            return node['left']
    else:
        if isinstance(node['right'], dict):
            return predict(node['right'], row)
        else:
            return node['right']


# 13. subsample

def subsample(dataset, ratio):
    sample = list()
    n_sample = round(len(dataset) * ratio)
    while len(sample) < n_sample:
        index = randrange(len(dataset))
        sample.append(dataset[index])
    return sample


# 14.make prediction using bagging
def bagging_predict(trees, row):
    predictions = [predict(tree, row) for tree in trees]
    return max(set(predictions), key=predictions.count)


# 15.bagging

def bagging(train, test, max_depth, min_size, sample_size, n_trees):
    trees = list()
    for i in range(n_trees):
        sample = subsample(train, sample_size)
        tree = build_tree(sample, max_depth, min_size)
        trees.append(tree)
    predictions = [bagging_predict(trees, row) for row in test]
    return (predictions)


seed(1)
dataset = load_csv('sonar.all-data.csv')

for i in range(len(dataset[0]) - 1):
    str_to_float(dataset, i)

str_to_int(dataset, len(dataset[0]) - 1)

n_folds = 5
max_depth = 6
min_size = 2
sample_size = 0.5

for n_trees in [1, 5, 10, 50]:
    scores = evaluate_our_algo(dataset, bagging, n_folds, max_depth, min_size, sample_size, n_trees)
    print('We are using [%d]' % n_trees)
    print('The scores are : [%s]' % scores)
    print('The mean accuracy is [%.3f]' % (sum(scores) / float(len(scores))))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值