
机器学习
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能核心,是使计算机具有智能的根本途径。
gemoumou
hello word
展开
-
机器学习实战-SVM算法-27
SVM算法-线性分类 import numpy as np import matplotlib.pyplot as plt from sklearn import svm # 创建40个点 x_data = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] y_data = [0]*20 +[1]*20 plt.scatter(x_data[:,0],x_data[:,1],c=y_data) plt.show原创 2021-02-20 10:29:40 · 395 阅读 · 0 评论 -
机器学习实战-PCA算法-26
PCA算法-手写数字降维可视化 from sklearn.neural_network import MLPClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report,confusion_matrix import numpy as np import matp原创 2021-02-20 10:23:54 · 292 阅读 · 0 评论 -
机器学习实战-聚类分析KMEANS算法-25
KMEANS算法-NBA球队实力聚类分析 from sklearn.cluster import KMeans import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import MinMaxScaler data = pd.read_csv('nba.csv') data.head() minmax_scaler = MinMaxScaler() # 标准化原创 2021-02-20 10:17:11 · 683 阅读 · 0 评论 -
机器学习实战-贝叶斯算法-24
贝叶斯-新闻分类 from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split news = fetch_20newsgroups(subset='all') print(news.target_names) print(len(news.data)) print(len(news.target)) print(len(news.target_names))原创 2021-02-20 10:10:15 · 155 阅读 · 0 评论 -
机器学习实战-集成学习-23
集成学习-泰坦尼克号船员获救预测 import pandas titanic = pandas.read_csv("titanic_train.csv") titanic # 空余的age填充整体age的中值 titanic["Age"] = titanic["Age"].fillna(titanic["Age"].median()) print(titanic.describe()) print(titanic["Sex"].unique()) # 把male变成0,把female变成1原创 2021-02-20 10:03:10 · 282 阅读 · 0 评论 -
机器学习实战-决策树-22
机器学习实战-决策树-叶子分类 import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifi原创 2021-02-20 09:50:31 · 325 阅读 · 0 评论 -
机器学习实战-神经网络-21
# pip install scikit-learn --upgrade from sklearn.neural_network import MLPClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import原创 2021-02-19 15:31:59 · 263 阅读 · 0 评论 -
机器学习实战-KNN算法-20
# 导入算法包以及数据集 from sklearn import neighbors from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import random # 载入数据 iris = datasets.load_iris() print(iris) # 打乱数据切分数据集 # x_t原创 2021-02-19 15:26:56 · 378 阅读 · 0 评论 -
机器学习实战-逻辑回归-19
import numpy as np train_data = np.genfromtxt('Churn-Modelling.csv',delimiter=',',dtype=np.str) test_data = np.genfromtxt('Churn-Modelling-Test-Data.csv',delimiter=',',dtype=np.str) x_train = train_data[1:,:-1] y_train = train_data[1:,-1].astype(int) ...原创 2021-02-19 15:19:50 · 809 阅读 · 0 评论 -
机器学习实战-回归算法-18
from sklearn.datasets import load_boston import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV import seaborn as sns house = load_boston() print(house.DESCR) x = house.data y = house.target d原创 2021-02-19 14:32:26 · 154 阅读 · 0 评论 -
机器学习基础-支持向量机 SVM-17
支持向量机SVM(Support Vector Machines) SVM简单例子 from sklearn import svm x = [[3, 3], [4, 3], [1, 1]] y = [1, 1, -1] model = svm.SVC(kernel='linear') model.fit(x, y) # 打印支持向量 print(model.support_vectors_) # 第2和第0个点是支持向量 print(model.support_)原创 2021-02-19 14:02:29 · 369 阅读 · 0 评论 -
机器学习基础-主成分分析PCA-16
主成分分析PCA(Principal Component Analysis) PCA-简单例子 import numpy as np import matplotlib.pyplot as plt # 载入数据 data = np.genfromtxt("data.csv", delimiter=",") x_data = data[:,0] y_data = data[:,1] plt.scatter(x_data,y_data) plt.show() print(x_data原创 2021-02-19 11:26:45 · 327 阅读 · 0 评论 -
机器学习基础-聚类算法-15
聚类算法 K-MEANS python实现K-MEANS import numpy as np import matplotlib.pyplot as plt # 载入数据 data = np.genfromtxt("kmeans.txt", delimiter=" ") plt.scatter(data[:,0],data[:,1]) plt.show() 训练模型 # 计算距离 def euclDistance(vector1, vector2): re原创 2021-02-18 22:24:58 · 729 阅读 · 0 评论 -
机器学习基础-贝叶斯分析-14
贝叶斯分析 贝叶斯-iris # 导入算法包以及数据集 import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report,confusion_matrix from sklearn.naive_bayes import Multinomi原创 2021-02-18 22:06:13 · 165 阅读 · 0 评论 -
机器学习基础-集成学习-13
集成学习Ensemble Learning bagging # 导入算法包以及数据集 from sklearn import neighbors from sklearn import datasets from sklearn.ensemble import BaggingClassifier from sklearn import tree from sklearn.model_selection import train_test_split import numpy as np impo原创 2021-02-18 21:54:35 · 230 阅读 · 0 评论 -
机器学习基础-决策树-12
决策树Decision Tree 决策树-例子 from sklearn.feature_extraction import DictVectorizer from sklearn import tree from sklearn import preprocessing import csv # 读入数据 Dtree = open(r'AllElectronics.csv', 'r') reader = csv.reader(Dtree) # 获取第一行数据 headers =原创 2021-02-18 21:37:51 · 358 阅读 · 0 评论 -
机器学习基础-最近邻规则分类 KNN (K-Nearest Neighbor)-11
KNN算法实现 import matplotlib.pyplot as plt import numpy as np import operator # 已知分类的数据 x1 = np.array([3,2,1]) y1 = np.array([104,100,81]) x2 = np.array([101,99,98]) y2 = np.array([10,5,2]) scatter1 = plt.scatter(x1,y1,c='r') scatter2 = plt.scatter(x2...原创 2021-02-18 14:49:09 · 285 阅读 · 0 评论 -
机器学习基础-神经网络-10
神经网络原创 2021-02-18 10:31:29 · 255 阅读 · 0 评论 -
机器学习基础-逻辑回归-09
逻辑回归 正确率/召回率/F1指标 梯度下降法-逻辑回归 import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import classification_report from sklearn import preprocessing # 数据是否需要标准化 scale = True # 载入数据 data = np.genfromtxt("LR-testSet.csv",原创 2021-02-17 18:43:02 · 156 阅读 · 0 评论 -
机器学习基础-弹性网 Elastic Net-08
import numpy as np from numpy import genfromtxt from sklearn import linear_model # 读入数据 data = genfromtxt(r"longley.csv",delimiter=',') print(data) # 切分数据 x_data = data[1:,2:] y_data = data[1:,1] print(x_data) print(y_data) # 创建模型 model = linear_mo..原创 2021-02-17 17:33:57 · 255 阅读 · 0 评论 -
机器学习基础-LASSO-07
import numpy as np from numpy import genfromtxt from sklearn import linear_model # 读入数据 data = genfromtxt(r"longley.csv",delimiter=',') print(data) # 切分数据 x_data = data[1:,2:] y_data = data[1:,1] print(x_data) print(y_data) # 创建模型 model = linear_...原创 2021-02-17 17:31:22 · 121 阅读 · 0 评论 -
机器学习基础-岭回归-06
岭回归Ridge Regression 标准方程法-岭回归 import numpy as np from numpy import genfromtxt import matplotlib.pyplot as plt # 读入数据 data = genfromtxt(r"longley.csv",delimiter=',') print(data) # 切分数据 x_data = data[1:,2:] y_data = data[1:,1,np.newaxis] print(x_da原创 2021-02-17 17:27:36 · 645 阅读 · 0 评论 -
机器学习基础-特征缩放交叉验证法-05
特征缩放交叉验证法 过拟合(Overfitting)正则化(Regularized)原创 2021-02-17 17:21:55 · 99 阅读 · 0 评论 -
机器学习基础-标准方程法-04
标准方程法Normal Equation import numpy as np from numpy import genfromtxt import matplotlib.pyplot as plt # 载入数据 data = np.genfromtxt("data.csv", delimiter=",") x_data = data[:,0,np.newaxis] y_data = data[:,1,np.newaxis] plt.scatter(x_data,y_data) pl原创 2021-02-17 17:11:00 · 192 阅读 · 0 评论 -
机器学习基础-多项式回归-03
多项式回归 import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression # 载入数据 data = np.genfromtxt("job.csv", delimiter=",") x_data = data[1:,1] y_data = data[1:,2原创 2021-02-17 17:05:49 · 528 阅读 · 3 评论 -
机器学习基础-多元线性回归-02
矩阵运算 多元线性回归 梯度下降法-多元线性回归 import numpy as np from numpy import genfromtxt import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 读入数据 data = genfromtxt(r"Delivery.csv",delimiter=',') print(data) # 切分数据 x_data = data[:原创 2021-02-17 17:01:37 · 375 阅读 · 0 评论 -
机器学习基础-一元线性回归-01
回归分析 Regression 一元线性回归 • 回归分析(regression analysis)用来建立方程模拟两 个或者多个变量之间如何关联 • 被预测的变量叫做:因变量(dependent variable), 输出(output) • 被用来进行预测的变量叫做: 自变量(independent variable), 输入(input) • 一元线性回归包含一个自变量和一个因变量 • 以上两个变量的关系用一条直线来模拟 • 如果包含两个以上的自变量,则称作多元回归分析 (multiple re原创 2021-02-17 16:54:30 · 150 阅读 · 0 评论