题意:n个点的联通图,一定能找到小于k的环或(k+1)/2个互不相邻点
#include<bits/stdc++.h>
using namespace std;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n, m, k;
std::cin >> n >> m >> k;
vector<vector<int>> e(n + 1);
for(int i=0;i<m;i++)
{
int x,y;
cin>>x>>y;
e[x].push_back(y);
e[y].push_back(x);
}
vector<int>dep(n+1,-1), fa(n+1,-1);
function <void(int,int)> dfs = [&](int u, int p)
{
for(auto v:e[u])
{
if(v == p)continue;
if(dep[v] == -1)
{
dep[v] = dep[u] + 1;
fa[v] = u;
dfs(v,u);
}
else if(dep[v] < dep[u] && dep[u]-dep[v] <= k -1)
{
cout<<2<<endl;
cout<<dep[u]-dep[v]+1<<endl;
for(int i=u;i!=fa[v];i=fa[i])
{
cout<<i<<" ";
}
cout<<endl;
exit(0);
}
}
};
dep[1] = 0;
dfs(1,-1);
vector<int> c;
int l = (k+1)/2;
if(n - 1 == m)
{
for(int x=0;x<2;x++)
{
c.clear();
for(int i=1;i<=n;i++)
{
if((dep[i]&1)==x&&c.size()<l)
{
c.push_back(i);
}
}
if(c.size()==l)break;
}
}
else
{
int u=1;
while(dep[u] < 2*l -2) ++u;
for(int i=0;i<l;i++,u=fa[fa[u]])
{
c.push_back(u);
}
}
cout<< 1 << "\n";
for(auto x:c)cout<<x<<" ";
cout<<endl;
return 0;
}