简单的数据库分级分类算法模型实现

在数据库管理中,分级分类算法模型可以用于对数据进行分类和分级,以便更好地管理和保护数据。以下是一个基于深度学习的数据库分级分类算法模型的示例,使用 Python 和 TensorFlow/Keras 实现。

1. 数据准备

首先,我们需要准备数据。假设我们有一个包含数据库表及其分类标签的数据集。每个表有一组特征(如列数、行数、数据类型等),并且每个表都有一个分类标签(如“敏感数据”、“非敏感数据”等)。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler

# 示例数据集
data = {
    'table_name': ['table1', 'table2', 'table3', 'table4'],
    'num_columns': [10, 15, 20, 25],
    'num_rows': [1000, 2000, 3000, 4000],
    'data_types': ['mixed', 'numeric', 'text', 'mixed'],
    'label': ['sensitive', 'non-sensitive', 'sensitive', 'non-sensitive']
}

df = pd.DataFrame(data)

# 特征工程
df['data_types'] = df['data_types'].map({'mixed': 0, 'numeric': 1, 'text': 2})

# 特征和标签
X = df[['num_columns', 'num_rows', 'data_types']]
y = df['label']

# 编码标签
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)

# 标准化特征
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2. 构建模型

接下来,我们构建一个简单的神经网络模型来进行分类。

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout

# 构建模型
model = Sequential([
    Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
    Dropout(0.2),
    Dense(32, activation='relu'),
    Dropout(0.2),
    Dense(16, activation='relu'),
    Dense(1, activation='sigmoid')
])

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 打印模型摘要
model.summary()

3. 训练模型

使用训练数据来训练模型。

# 训练模型
history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2)

4. 评估模型

使用测试数据来评估模型的性能。

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Test Loss: {loss}')
print(f'Test Accuracy: {accuracy}')

5. 使用模型进行预测

使用训练好的模型对新数据进行预测。

# 新数据
new_data = [[12, 1500, 1]]  # 示例新数据

# 标准化新数据
new_data = scaler.transform(new_data)

# 预测
prediction = model.predict(new_data)
predicted_label = label_encoder.inverse_transform([int(prediction > 0.5)])

print(f'Predicted Label: {predicted_label[0]}')

6. 模型优化

你可以通过调整模型结构、增加数据量、使用更复杂的特征工程等方法来优化模型性能。

7. 部署模型

将训练好的模型保存并部署到生产环境中,以便对新的数据库表进行自动分类。

# 保存模型
model.save('database_classification_model.h5')

# 加载模型
from tensorflow.keras.models import load_model
loaded_model = load_model('database_classification_model.h5')

总结

这个示例展示了如何使用深度学习模型对数据库表进行分类。通过特征工程、模型构建、训练和评估,你可以创建一个简单的数据库分级分类模型。

完整代码示例

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.models import load_model

# 1. 数据准备
# 示例数据集
data = {
    'table_name': ['table1', 'table2', 'table3', 'table4'],
    'num_columns': [10, 15, 20, 25],
    'num_rows': [1000, 2000, 3000, 4000],
    'data_types': ['mixed', 'numeric', 'text', 'mixed'],
    'label': ['sensitive', 'non-sensitive', 'sensitive', 'non-sensitive']
}

df = pd.DataFrame(data)

# 特征工程
df['data_types'] = df['data_types'].map({'mixed': 0, 'numeric': 1, 'text': 2})

# 特征和标签
X = df[['num_columns', 'num_rows', 'data_types']]
y = df['label']

# 编码标签
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)

# 标准化特征
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 2. 构建模型
# 构建模型
model = Sequential([
    Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
    Dropout(0.2),
    Dense(32, activation='relu'),
    Dropout(0.2),
    Dense(16, activation='relu'),
    Dense(1, activation='sigmoid')
])

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 打印模型摘要
model.summary()

# 3. 训练模型
# 训练模型
history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2)

# 4. 评估模型
# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Test Loss: {loss}')
print(f'Test Accuracy: {accuracy}')

# 5. 使用模型进行预测
# 新数据
new_data = [[12, 1500, 1]]  # 示例新数据

# 标准化新数据
new_data = scaler.transform(new_data)

# 预测
prediction = model.predict(new_data)
predicted_label = label_encoder.inverse_transform([int(prediction > 0.5)])

print(f'Predicted Label: {predicted_label[0]}')

# 6. 保存模型
# 保存模型
model.save('database_classification_model.h5')

# 7. 加载模型
# 加载模型
loaded_model = load_model('database_classification_model.h5')

# 使用加载的模型进行预测
loaded_prediction = loaded_model.predict(new_data)
loaded_predicted_label = label_encoder.inverse_transform([int(loaded_prediction > 0.5)])

print(f'Loaded Model Predicted Label: {loaded_predicted_label[0]}')

运行步骤

  1. 安装依赖:确保你已经安装了所需的 Python 库。你可以使用以下命令安装依赖:

    pip install pandas scikit-learn tensorflow
    
  2. 运行脚本:将上述代码保存为一个 Python 文件(例如 database_classification.py),然后在终端中运行:

    python database_classification.py
    
    
  3. 运行结果

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 dense (Dense)               (None, 64)                256       
                                                                 
 dropout (Dropout)           (None, 64)                0         
                                                                 
 dense_1 (Dense)             (None, 32)                2080      
                                                                 
 dropout_1 (Dropout)         (None, 32)                0         
                                                                 
 dense_2 (Dense)             (None, 16)                528       
                                                                 
 dense_3 (Dense)             (None, 1)                 17        
                                                                 
=================================================================
Total params: 2,881
Trainable params: 2,881
Non-trainable params: 0
_________________________________________________________________
Epoch 1/50
1/1 [==============================] - 3s 3s/step - loss: 0.7398 - accuracy: 0.5000 - val_loss: 0.7684 - val_accuracy: 0.0000e+00
Epoch 2/50
1/1 [==============================] - 0s 39ms/step - loss: 0.6562 - accuracy: 1.0000 - val_loss: 0.7713 - val_accuracy: 0.0000e+00
Epoch 3/50
1/1 [==============================] - 0s 35ms/step - loss: 0.6510 - accuracy: 0.5000 - val_loss: 0.7739 - val_accuracy: 0.0000e+00
Epoch 4/50
1/1 [==============================] - 0s 36ms/step - loss: 0.6373 - accuracy: 0.5000 - val_loss: 0.7774 - val_accuracy: 0.0000e+00
Epoch 5/50
1/1 [==============================] - 0s 37ms/step - loss: 0.6356 - accuracy: 0.5000 - val_loss: 0.7814 - val_accuracy: 0.0000e+00
Epoch 6/50
1/1 [==============================] - 0s 36ms/step - loss: 0.6484 - accuracy: 0.5000 - val_loss: 0.7855 - val_accuracy: 0.0000e+00
Epoch 7/50
1/1 [==============================] - 0s 50ms/step - loss: 0.5280 - accuracy: 1.0000 - val_loss: 0.7906 - val_accuracy: 0.0000e+00
Epoch 8/50
1/1 [==============================] - 0s 54ms/step - loss: 0.6326 - accuracy: 0.5000 - val_loss: 0.7956 - val_accuracy: 0.0000e+00
Epoch 9/50
1/1 [==============================] - 0s 40ms/step - loss: 0.6714 - accuracy: 0.5000 - val_loss: 0.8000 - val_accuracy: 0.0000e+00
Epoch 10/50
1/1 [==============================] - 0s 35ms/step - loss: 0.5443 - accuracy: 0.5000 - val_loss: 0.8044 - val_accuracy: 0.0000e+00
Epoch 11/50
1/1 [==============================] - 0s 34ms/step - loss: 0.5376 - accuracy: 1.0000 - val_loss: 0.8092 - val_accuracy: 0.0000e+00
Epoch 12/50
1/1 [==============================] - 0s 35ms/step - loss: 0.5667 - accuracy: 1.0000 - val_loss: 0.8140 - val_accuracy: 0.0000e+00
Epoch 13/50
1/1 [==============================] - 0s 37ms/step - loss: 0.6162 - accuracy: 1.0000 - val_loss: 0.8188 - val_accuracy: 0.0000e+00
Epoch 14/50
1/1 [==============================] - 0s 42ms/step - loss: 0.5610 - accuracy: 1.0000 - val_loss: 0.8233 - val_accuracy: 0.0000e+00
Epoch 15/50
1/1 [==============================] - 0s 39ms/step - loss: 0.5022 - accuracy: 1.0000 - val_loss: 0.8279 - val_accuracy: 0.0000e+00
Epoch 16/50
1/1 [==============================] - 0s 36ms/step - loss: 0.4388 - accuracy: 1.0000 - val_loss: 0.8326 - val_accuracy: 0.0000e+00
Epoch 17/50
1/1 [==============================] - 0s 41ms/step - loss: 0.5745 - accuracy: 0.5000 - val_loss: 0.8376 - val_accuracy: 0.0000e+00
Epoch 18/50
1/1 [==============================] - 0s 46ms/step - loss: 0.5189 - accuracy: 1.0000 - val_loss: 0.8430 - val_accuracy: 0.0000e+00
Epoch 19/50
1/1 [==============================] - 0s 45ms/step - loss: 0.5232 - accuracy: 1.0000 - val_loss: 0.8483 - val_accuracy: 0.0000e+00
Epoch 20/50
1/1 [==============================] - 0s 37ms/step - loss: 0.5426 - accuracy: 1.0000 - val_loss: 0.8535 - val_accuracy: 0.0000e+00
Epoch 21/50
1/1 [==============================] - 0s 32ms/step - loss: 0.4608 - accuracy: 1.0000 - val_loss: 0.8592 - val_accuracy: 0.0000e+00
Epoch 22/50
1/1 [==============================] - 0s 32ms/step - loss: 0.4811 - accuracy: 1.0000 - val_loss: 0.8649 - val_accuracy: 0.0000e+00
Epoch 23/50
1/1 [==============================] - 0s 37ms/step - loss: 0.5173 - accuracy: 1.0000 - val_loss: 0.8709 - val_accuracy: 0.0000e+00
Epoch 24/50
1/1 [==============================] - 0s 38ms/step - loss: 0.4349 - accuracy: 1.0000 - val_loss: 0.8771 - val_accuracy: 0.0000e+00
Epoch 25/50
1/1 [==============================] - 0s 38ms/step - loss: 0.4210 - accuracy: 1.0000 - val_loss: 0.8837 - val_accuracy: 0.0000e+00
Epoch 26/50
1/1 [==============================] - 0s 34ms/step - loss: 0.4244 - accuracy: 1.0000 - val_loss: 0.8903 - val_accuracy: 0.0000e+00
Epoch 27/50
1/1 [==============================] - 0s 31ms/step - loss: 0.3607 - accuracy: 1.0000 - val_loss: 0.8970 - val_accuracy: 0.0000e+00
Epoch 28/50
1/1 [==============================] - 0s 39ms/step - loss: 0.3734 - accuracy: 1.0000 - val_loss: 0.9037 - val_accuracy: 0.0000e+00
Epoch 29/50
1/1 [==============================] - 0s 46ms/step - loss: 0.3871 - accuracy: 1.0000 - val_loss: 0.9104 - val_accuracy: 0.0000e+00
Epoch 30/50
1/1 [==============================] - 0s 41ms/step - loss: 0.3772 - accuracy: 1.0000 - val_loss: 0.9172 - val_accuracy: 0.0000e+00
Epoch 31/50
1/1 [==============================] - 0s 41ms/step - loss: 0.4542 - accuracy: 1.0000 - val_loss: 0.9241 - val_accuracy: 0.0000e+00
Epoch 32/50
1/1 [==============================] - 0s 42ms/step - loss: 0.3740 - accuracy: 1.0000 - val_loss: 0.9309 - val_accuracy: 0.0000e+00
Epoch 33/50
1/1 [==============================] - 0s 48ms/step - loss: 0.3508 - accuracy: 1.0000 - val_loss: 0.9374 - val_accuracy: 0.0000e+00
Epoch 34/50
1/1 [==============================] - 0s 51ms/step - loss: 0.4144 - accuracy: 1.0000 - val_loss: 0.9432 - val_accuracy: 0.0000e+00
Epoch 35/50
1/1 [==============================] - 0s 38ms/step - loss: 0.3459 - accuracy: 1.0000 - val_loss: 0.9493 - val_accuracy: 0.0000e+00
Epoch 36/50
1/1 [==============================] - 0s 38ms/step - loss: 0.4423 - accuracy: 1.0000 - val_loss: 0.9560 - val_accuracy: 0.0000e+00
Epoch 37/50
1/1 [==============================] - 0s 33ms/step - loss: 0.3309 - accuracy: 1.0000 - val_loss: 0.9636 - val_accuracy: 0.0000e+00
Epoch 38/50
1/1 [==============================] - 0s 32ms/step - loss: 0.3614 - accuracy: 1.0000 - val_loss: 0.9714 - val_accuracy: 0.0000e+00
Epoch 39/50
1/1 [==============================] - 0s 39ms/step - loss: 0.3196 - accuracy: 1.0000 - val_loss: 0.9799 - val_accuracy: 0.0000e+00
Epoch 40/50
1/1 [==============================] - 0s 38ms/step - loss: 0.4845 - accuracy: 1.0000 - val_loss: 0.9886 - val_accuracy: 0.0000e+00
Epoch 41/50
1/1 [==============================] - 0s 40ms/step - loss: 0.2993 - accuracy: 1.0000 - val_loss: 0.9972 - val_accuracy: 0.0000e+00
Epoch 42/50
1/1 [==============================] - 0s 39ms/step - loss: 0.3083 - accuracy: 1.0000 - val_loss: 1.0059 - val_accuracy: 0.0000e+00
Epoch 43/50
1/1 [==============================] - 0s 39ms/step - loss: 0.2751 - accuracy: 1.0000 - val_loss: 1.0146 - val_accuracy: 0.0000e+00
Epoch 44/50
1/1 [==============================] - 0s 47ms/step - loss: 0.2893 - accuracy: 1.0000 - val_loss: 1.0238 - val_accuracy: 0.0000e+00
Epoch 45/50
1/1 [==============================] - 0s 50ms/step - loss: 0.3552 - accuracy: 1.0000 - val_loss: 1.0329 - val_accuracy: 0.0000e+00
Epoch 46/50
1/1 [==============================] - 0s 37ms/step - loss: 0.3426 - accuracy: 1.0000 - val_loss: 1.0422 - val_accuracy: 0.0000e+00
Epoch 47/50
1/1 [==============================] - 0s 39ms/step - loss: 0.3044 - accuracy: 1.0000 - val_loss: 1.0499 - val_accuracy: 0.0000e+00
Epoch 48/50
1/1 [==============================] - 0s 38ms/step - loss: 0.3297 - accuracy: 1.0000 - val_loss: 1.0572 - val_accuracy: 0.0000e+00
Epoch 49/50
1/1 [==============================] - 0s 40ms/step - loss: 0.2171 - accuracy: 1.0000 - val_loss: 1.0646 - val_accuracy: 0.0000e+00
Epoch 50/50
1/1 [==============================] - 0s 40ms/step - loss: 0.2799 - accuracy: 1.0000 - val_loss: 1.0717 - val_accuracy: 0.0000e+00
1/1 [==============================] - 0s 27ms/step - loss: 0.8144 - accuracy: 0.0000e+00
Test Loss: 0.8143904209136963
Test Accuracy: 0.0
1/1 [==============================] - 0s 157ms/step
Predicted Label: sensitive
1/1 [==============================] - 0s 86ms/step
Loaded Model Predicted Label: sensitive
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值