渣渣编程bug多,调来调去一上午
//
// Created by dgm on 19-3-27.
//
#include <iostream>
using namespace std;
typedef int VertexType; //边的长度,本例全部输入1
typedef int VRType; //节点编号
typedef char* Info; //附加信息
#define MaxNum 100
#define Infinity 65535
typedef struct { //邻接矩阵
VertexType adj=Infinity;
Info info;
}ArcCell,GMatrix[MaxNum][MaxNum];
typedef struct {
GMatrix arcs;
VRType vexs[MaxNum];
unsigned arcnum,vexnum;
}MGraph;
void CreateGraph(MGraph&G)
{
cout<<"vexnum&arcnum"<<endl;
cin>>G.vexnum>>G.arcnum;
cout<<"vexs"<<endl;
for (int i = 0; i < G.vexnum; ++i) cin>>G.vexs[i];
cout<<"arcs"<<endl;
int posx,posy;
VertexType weight;
for (int i = 0; i < G.arcnum; ++i) {
cin>>posx>>posy>>weight;
for (int j = 0; j < G.vexnum; ++j) { //这里是为了找到节点在G.vexs中的位置
if (G.vexs[j]==posx)posx=j; //因为输入的节点的编号不一定是其在G.vexs中的位置
if (G.vexs[j]==posy)posy=j; //例如节点从1开始编号,而vexs从下标0开始存储
}
G.arcs[posx][posy].adj=G.arcs[posy][posx].adj=weight; //注意对称位置也要赋值
}
}
int FirstAdjVex(MGraph G,int u) //找到与G.vexs[u]节点之间有边的第一个节点
{
for (int i = 0; i < G.vexnum; ++i)
if(G.arcs[u][i].adj!=Infinity)
return i;
return -1;
}
int NextAdjVex(MGraph G,int u,int w) //找到与G.vexs[u]节点之间有边的并且在G.vexs[w]之后的节点
{
for (int i = w+1; i < G.vexnum; ++i)
if(G.arcs[u][i].adj!=Infinity)
return i;
return -1;
}
int visited[MaxNum]; //遍历时,用于标记节点是否已经被访问过
void DFS(MGraph G,int u) //深度优先
//在递归的过程中,参数u的值一直在变,
//因此,可以找到与G.vexs[u]之间有路径的所有节点
{
visited[u]=1;
cout<<G.vexs[u]<<" ";
for (int i = FirstAdjVex(G,u); i >=0 ; i=NextAdjVex(G,u,i))
if (!visited[i])DFS(G,i);
}
void DFSTraverse(MGraph G) //应对G不是连通图的情况
//如果G是连通图,只用DFS就可以全部遍历
{
for (int i = 0; i < G.vexnum; ++i) visited[i]=0;
for (int i = 0; i < G.vexnum; ++i)
if(!visited[i])DFS(G,i);
}
typedef struct Node{
int vex;
Node* next;
}Node,*QNode;
typedef struct { //广度遍历要用到队列
QNode front;
QNode rear;
}Queue;
void InitQueue(Queue&Q)
{
Q.front=Q.rear=(QNode)malloc(sizeof(Node)); //注意:
//因为Q.front指向一个空的Node,而不是直接指向被储存元素
//所以第一个有效元素从Q.front->next开始存储
Q.front->next=Q.rear->next=NULL;
}
void EnQueue(Queue&Q,VRType u)
{
QNode q=(QNode)malloc(sizeof(Node));
q->vex=u;
Q.rear->next=q;
Q.rear=q;
}
void DeQueue(Queue&Q,int &u)
{
QNode p=Q.front;
Q.front=Q.front->next;
u=Q.front->vex;
free(p);
}
bool EmptyQueue(Queue Q)
{
return Q.front==Q.rear;
}
void BFSTraverse(MGraph G)
{
Queue Q;
int u;
InitQueue(Q);
for (int i = 0; i < G.vexnum; ++i) visited[i]=0;
for (int i = 0; i < G.vexnum; ++i) {
if(!visited[i])
{
visited[i]=1;
EnQueue(Q,i);
while(!EmptyQueue(Q))
{
DeQueue(Q,u); //出队,并在接下来的for中,将G.vexs[u]的所有邻接顶点入队
cout<<G.vexs[u]<<" ";
for (int j = FirstAdjVex(G,u); j >=0 ; j=NextAdjVex(G,u,j)) {
if(!visited[j]){
visited[j]=1;
EnQueue(Q,j);
}
}
}
}
}
}
int main()
{
MGraph G;
CreateGraph(G);
DFSTraverse(G);
cout<<endl<<"*****************"<<endl;
BFSTraverse(G);
return 0;
}